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We consider the so-called length-interacting Arak-Surgailis polygonal Markov fields
with V-shaped nodes – a continuum and isometry invariant process in the plane sharing
a number of properties with the two-dimensional Ising model. For these polygonal fields
we establish a low-temperature phase separation theorem in the spirit of the Dobrushin-
Kotecký-Shlosman theory, with the corresponding Wulff shape deteremined to be a
disk due to the rotation invariant nature of the considered model. As an important
tool replacing the classical cluster expansion techniques and very well suited for our
geometric setting we use a graphical construction built on contour birth and death
process, following the ideas of Fernández, Ferrari and Garcia.

KEY WORDS: phase separation, DKS theorem, Wulff shape, Arak-Surgailis
polygonal Markov fields.

1. INTRODUCTION AND MAIN RESULTS

An example of a planar polygonal Markov field, referred to as the Arak pro-
cess throughout this paper, was first introduced by Arak. (1) Further devel-
opments are due to Arak and Surgailis, (2,3) Surgailis, (16) Arak, Clifford and
Surgailis. (4) In this paper we focus our attention on polygonal Markov fields
with V-shaped nodes, which are a particular class of ensembles of self-avoiding
polygonal loops (contours) in the plane, interacting only by the requirement of dis-
jointness. Not unexpectedly, these objects share a number of properties of the two-
dimensional Ising model, including the presence of spontaneous magnetisation and
absence of infinite contour nesting in low temperature region, see Nicholls (13) and
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Schreiber. (15) An important property of the Arak process and its length-interacting
Gibbsian modifications is their isometry invariance. One might be tempted to view
these purely continuum polygonal fields as a kind of continuum version of the Ising
model. For low temperatures this opinion seems to be well founded. There is a
number of relevant differences though in the much less understood high temper-
ature region. In sharp contrast to the Ising model it is not clear how to define
the infinite temperature non-interacting field, since some spatial correlation is al-
ways present due to the imposed polygonal nature of the contours. Therefore as
the reference field for length-interacting Gibbsian modifications we choose the
original Arak process, enjoying a number of striking properties including con-
sistency, exact solubility and admitting the so-called dynamic representation in
terms of equilibrium evolution of one-dimensional particle systems tracing the
polygonal boundaries of the process in two-dimensional space-time, see Arak and
Surgailis (2) and the Appendix below for details.

The purpose of this paper is to show that, in analogy with the Ising model, the
phase separation phenomenon is present for length-interacting polygonal Markov
fields and it is gouverned by the Wulff construction, see Bodineau, Ioffe and
Velenik(6) for an extensive reference. We establish our main Theorem 1.2 in the
DKS set-up, as introduced by Dobrushin, Kotecký and Shlosman in their seminal
monograph, (7) and we only work at low enough temperatures. As a crucial tool
replacing cluster expansion techniques and very well suited for our geometric
setting we use a graphical construction built on contour birth and death process,
as introduced by Fernández, Ferrari and Garcia,(9−11) see Subsec. 1.2. We took
advantage of the particular properties of polygonal fields in order to characterise
the model-specific surface tension, defined in Subsec. 1.3, in terms of hitting
probabilities of appropriate planar random walks in random environment provided
by the graphical construction. Even though we were only able to establish relatively
weak results for the quality of approximation of the surface tension by its finite
volume versions, we used the isometry invariance of the model to circumvent
this problem. A particular feature of our approach is that rather than imposing
periodic [as in Dobrushin, Kotecký and Shlosman(7)] or fixed sign boundary
conditions [as Ioffe and Schonmann, (12)] we work directly in the thermodynamic
limit conditioned on the event that no large contours hit the boundary of the
region. This allows us to avoid technical difficulties which would arise if we had
to control our surface tension estimates in close vicinity of the boundary. Finally,
the micro-canonical constraint considered in this paper requires that the excess of
total magnetisation be larger or equal rather than just equal to a given positive
threshold value - this avoids a number of technical complications which would
otherwise arise due to the continuum nature of our setting and allows us to work
with weaker versions of moderate deviation estimates and to rely upon general
local central limit (LCL) results available in the literature rather than establishing
an LCL theorem in its full strength specialised for our model. In analogy to the
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original DKS approach, the crucial ingredients of the proof of our main Theorem
1.2 are

• the coarse graining estimates of Sec. 6, based on skeleton techniques
slightly modified and specialised for our particular setting. The graphical
construction of Subsec. 1.2 is used as a crucial tool replacing cluster
expansion techniques,

• moderate deviation estimates for cut-off ensembles, stated in Sec. 3 and es-
tablished by the classical method of studying the restricted phase modified
by actions of finely-tuned external magnetic fields, see e.g. Sec. 2 of Ioffe
and Schonmann. (12) The graphical construction of Subsec. 1.2 admits an
extension for these modified fields.

We believe the techniques developed in the present paper should in principle
be applicable to general continuum models exhibiting isometry invariance and
admitting polymer representation.

The remaining part of the introductory section is organised as follows. Below,
in Subsec. 1.1 we give a formal construction of the polygonal Markov fields. The
next Subsec. 1.2 is devoted to the graphical construction. The surface tension
specific for our model is defined in Subsec. 1.3. Finally, our main results are
formulated in Subsec. 1.4.

Throughout the paper we make extensive use of the ‘O,�,�’ notation, with
O(X ) and �(X ) standing respectively for quantities bounded in their absolute
value above and below by a constant times X, and with �(X ) = O(X ) ∩ �(X ).
Moreover, we use c, C, C1, C2 etc. to denote generic constants which can change
their values from one statement to another.

1.1. Length-Interacting Polygonal Markov Fields

The formal construction of the basic Arak process with empty boundary
conditions in a bounded open set D ⊆ R

2 goes as briefly discussed below [we
refer the reader to Refs. 2 and 4 for further details]. In the sequel we assume that
the boundary ∂ D is piecewise smooth. We define the family �D of admissible
polygonal configurations on D by taking all the planar graphs γ in D such that

(P1) γ ∩ ∂ D = ∅,

(P2) all the vertices of γ are of degree 2,

(P3) the edges of γ do not intersect,
(P4) no two edges of γ are co-linear.

In other words, γ consists of a finite number of disjoint polygons fully
contained in D and possibly nested. Further, for a finite collection (l) = (li )n

i=1
of straight lines intersecting D we denote by �D(l) the family of admissible
configurations γ with the additional properties that γ ⊆ ⋃n

i=1 li and γ ∩ li is a
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single interval of a strictly positive length for each li , i = 1, . . . , n, possibly with
some isolated points added. Let �D be the restriction to D of a homogeneous
Poisson line process � with intensity measure given by the standard isometry-
invariant Lebesgue measure µ on the space of straight lines in R

2. One possible
construction of µ goes by identifying a straight line l with the pair (φ, ρ) ∈
[0, π ) × R, where (ρ sin(φ), ρ cos(φ)) is the vector orthogonal to l and joining it
to the origin, and then by endowing the parameter space [0, π ) × R with the usual
Lebesgue measure. With the above notation, the basic polygonal Arak process AD

on D arises as the Gibbsian modification of the process induced on �D by �D,

with the Hamiltonian given by the double total edge length, that is to say

P (AD ∈ G) = E
∑

γ∈�D (�D )∩G exp(−2 length(γ ))

E
∑

γ∈�D (�D ) exp(−2 length(γ ))
(1.1)

for all G ⊆ �D Borel measurable, say with respect to the usual Hausdorff distance
topology, and where �D(�D) denotes �D(l) as defined above with l set to be the
collection of all straight lines of �D. Note that by the total edge length length(γ )
of a polygonal configuration γ we mean here and below the sum of lengths of
all constituent polygons. The expectations in (1.1) are taken with respect to the
randomness of �D. It should be mentioned at this point that in the literature on
consistent polygonal fields one usually considers free rather than empty boundary
conditions, see Ref. 2 and the Appendix below, yet the empty boundary object is
better suited for the graphical construction below and for our further purposes.

For a positive inverse temperature β > 0 we consider the length-interacting
Arak process A[β]

D in D determined in distribution by

dL
(
A[β]

D

)
dL(AD)

[γ ] := exp(−β length(γ ))

E exp (−β length (AD))
, (1.2)

with L(·) standing for the law of the argument random object. As shown in
Theorem 3 and Corollary 4 of Ref. 15 for β large enough the polygonal fields
A[β]

D , D ⊆ R
2, admit a unique whole plane thermodynamic limit without infinite

contours, denoted in the sequel by A[β], see also below for its construction. The
field A[β] is isometry invariant. The thermodynamic limit A[0] can also be shown
to exist for β = 0, in the sequel it is denoted by A and its construction is given in
the Appendix.

It is known that for the inverse temperature β sufficiently large (in particu-
lar, for all β within the validity region of the graphical construction below) the
thermodynamic limit A[β] exhibits only finite contour nesting, see Nicholls (13)

and the discussion following Corollary 4 in Schreiber. (15) Whence, the contour
ensemble A[β] partitions the plane into a unique infinite connected component
(the ocean) and a countable number of finitely nested bounded regions (islands).
We colour black and white the polygonal regions of this partition by declaring
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the infinite ocean white and by requiring that the collection of interfaces between
black and white regions coincide with the collection of contours A[β], which
uniquely determines the colouring. Denote the resulting union of black regions by
black[A[β]] and the union of white regions by white[A[β]]. For a bounded region
U ⊆ R

2 let MU

(
A[β]

)
be the magnetisation in U determined by the coloured

contour ensemble A[β] under the assignment black �→ +, white �→ −. In other
words, MU

(
A[β]

)
is the total area of the black-coloured regions in U minus the

total area of white-coloured regions in U :

MU

(
A[β]

)
:= Area

(
black[A[β]] ∩ U

) − Area
(
white[A[β]] ∩ U

)
.

For L > 0 we shall abbreviate MB2(L)
(
A[β]

)
to ML [β], where B2(L) stands for

the disk of radius L centred at 0. The isometry invariance of the infinite-volume
field A[β] implies that

EMU

(
A[β]

) = Area(U )M[β], M[β] ∈ (−1, 0), (1.3)

where |M[β]| is further referred to as the specific spontaneous magnetisation at
inverse temperature β. The ‘black[·]’ and ‘M·(·)’ notation will be also used for
A[β] replaced by a number of other polygonal fields enjoying the property that
the corresponding contour ensemble determines a unique unbounded region, to be
coloured white.

1.2. Graphical Construction

1.2.1. Basic Graphical Construction

As argued in Schreiber, (15) the polygonal field A[β]
D admits a natural repre-

sentation in terms of a graphical construction in the spirit of Fernández, Ferrari
and Garcia,(9−11) which will be a crucial tool in our argument in the sequel, as
replacing cluster expansion techniques. Below, we provide a description of this
construction borrowed from. (15) Consider the space CD consisting of all closed
polygonal contours in D which do not touch the boundary ∂ D. For a given finite
configuration (l) := (l1, . . . , ln) of straight lines intersecting D denote by CD(l)
the family of those polygonal contours in CD which belong to �D(l). We define
the so-called free contour measure �D on CD by putting for C ⊆ CD measur-
able, say with respect to the Borel σ -field generated by the Hausdorff distance
topology,

�D(C) =
∫

Fin(L[D])

∑
θ∈C∩CD (l)

exp(−2 length(θ ))dµ∗((l)) (1.4)

with Fin(L[D]) standing for the for the family of finite line configurations inter-
secting D and where µ∗ is the measure on Fin(L[D]) given by dµ∗((l1, . . . , ln)) :=
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∏n
i=1 dµ(li ) with µ defined in the discussion preceding (1.1). For β > 0 we con-

sider the exponential modification �
[β]
D of the free measure �D,

�
[β]
D (dθ ) := exp(−β length(θ ))�D(dθ ). (1.5)

Observe that for all bounded open sets D with piecewise smooth boundary the
free contour measures �D as defined in (1.4) arise as the respective restrictions
to CD of the same measure � on C := ⋃∞

n=1 C(−n,n)2 , in the sequel referred to
as the infinite volume free contour measure. Indeed, this follows easily by the
observation that �D1 restricted to CD2 coincides with �D2 for D2 ⊆ D1. In the
same way we construct the infinite-volume Gibbs-modified measures �[β]. The
following result, which is Lemma 1 of (15) (note that the first result in this spirit is
due to Nicholls, (13) see Lemma in the Appendix ibidem) will be crucial for our
further purposes.

Lemma 1.1. For β ≥ 2 we have

�[β]({θ | dx ∩ Vertices(θ ) �= ∅, length(θ ) > R}) ≤ 8π exp(−[β − 2]R)dx,

where the event {dx ∩ Vertices(θ ) �= ∅} is to be understood that a vertex of θ falls
into dx . Moreover, there exists a constant ε > 0 such that, for β ≥ 2,

�[β]({θ | 0 ∈ Int θ, length(θ ) > R}) ≤ exp(−[β − 2 + ε]R + o(R)),

with Int θ standing for the region enclosed by θ (recall that θ ∈ C is always a
single bounded contour).

Let P
�

[β]
D

be the Poisson point process on CD with intensity measure �
[β]
D . It

follows then directly by (1.4) and by (1.1) that A[β]
D coincides in distribution with

the union of contours in P
�

[β]
D

conditioned on the event that they are disjoint so
that

L
(
A[β]

D

)
= L


 ⋃

θ∈P
�

[β]
D

θ

∣∣∣∣ ∀θ,θ ′∈P
�

[β]
D

θ �= θ ′ ⇒ θ ∩ θ ′ = ∅


 , (1.6)

where the conditioning makes sense because �
[β]
D (CD) is finite as shown in

Subsec. 2.2 of. Ref. 15. In particular, as argued in Subsec. 2.2 and Theorem 2
ibidem, the law of A[β]

D is invariant and reversible with respect to the following
contour birth and death dynamics (γ D

s ) on �D.

(C:birth[β]) With intensity �
[β]
D (dθ )ds do

• Choose a new contour θ,
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• If θ ∩ γ D
s = ∅, accept θ and set γ D

s+ds := γ D
s ∪ θ,

• Otherwise reject θ and keep γ D
s+ds := γ D

s ,

(C:death[β]) With intensity 1 · ds for each contour θ ∈ γ D
s remove θ from γ D

s
setting γ D

s := γ D
s \ θ.

Moreover, L(A[β]
D ) is the unique invariant distribution of the above dynamics,

see Theorem 2 in Ref. 15. These observations place us within the framework
of the general contour birth and death graphical construction as developed by
Fernández, Ferrari and Garcia(9−11) and as briefly sketched below, see ibidem and
Schreiber (15) for further details. Choose β large enough, to be specified below.
Define F(C) to be the space of countable and locally finite collections of contours
from C, with the local finiteness requirement meaning that at most a finite number
of contours can hit a bounded subset of R

2. On the time-space R × F(C) we
construct the stationary free contour birth and death process (�s)s∈R with the
birth intensity measure given by �[β] and with the death intensity 1. Note that free
means here that every new-born contour is accepted regardless of whether it hits the
union of already existing contours or not, moreover we admit negative time here,
letting s range through R rather than just R+. Observe also that we need the birth
measure �[β] to be finite on the sets {θ ∈ C | θ ∩ A �= ∅} for all bounded Borel
A ⊆ R

2 in order to have the process (�s)s∈R well defined on R × F(C). By Lemma
1.1 this is ensured whenever β ≥ 2. To proceed, for the free process (�s)s∈R we
perform the following trimming procedure. We place a directed connection from
each time-space instance of a contour showing up in (�s)s∈R and denoted by
θ × [s0, s1), with θ standing for the contour and [s0, s1) for its lifespan, to all time-
space contour instances θ ′ × [s ′

0, s ′
1) with θ ′ ∩ θ �= ∅, s ′

0 ≤ s0 and s ′
1 > s0. In other

words, we connect θ × [s0, s1) to those contour instances which may have affected
the acceptance status of θ × [s0, s1) in the constrained contour birth and death
dynamics (C) as discussed above. These directed connections give rise to directed
ancestor chains of time-space contour instances, following Ref. 11 the union of
all ancestor chains stemming from a given contour instance θ∗ = θ × [s0, s1),
including the instance itself, is referred to as its clan of ancestors and is denoted
by An(θ∗). More generally, for a bounded region U in the plane we write Ans(U )
for the union of ancestor clans of all contour instances θ × [s0, s1) with θ ∩ U �= ∅
and s ∈ [s0, s1). Lemma 1.1 allows us to apply the technique of domination by
sub-critical branching processes, developed in, Refs. 9–11 in order to conclude
that there exists βg such that for each β > βg there exists c := c(β) > 0 such
that

P(diam Ans(B2(x, 1)) > R) ≤ exp(−cR), s ∈ R, x ∈ R
2, (1.7)

with B2(x, 1) standing for the radius 1 ball in R
2 centred at x . In the sequel we

shall always assume that β > βg, that is to say that β is in the validity region of the
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graphical construction. We see that for β > βg all the ancestor clans are a.s. finite
and we can uniquely determine the acceptance status of all their members: contour
instances with no ancestors are a.s. accepted, which automatically and uniquely
determines the acceptance status of all the remaining members of the clan by
recursive application of the inter-contour exclusion rule. In this case, discarding
the unaccepted contour instances leaves us with a time-space representation of a
stationary evolution (γs)s∈R on F(C), which is easily checked to evolve according
to the whole-plane version of the dynamics (C) above. In Sec. 4 and Theorem 4
of Ref. 15 we argue that for all s ∈ R the polygonal field γs coincides in dis-
tribution with the thermodynamic limit (see Section 3 ibidem) for A[β] without
infinite contours, which is unique (see Corollary 4 ibidem). It should be observed
that for each s ∈ R the free field �s coincides in distribution with the Poisson
contour process P�[β] . Since almost surely we have γs ⊆ �s, we get the stochastic
domination of the contour ensemble A[β] by P�[β] .

We also consider finite-volume versions of the above graphical construction,
replacing the infinite-volume birth intensity measure �[β] with its finite-volume
counterparts �

[β]
D for bounded and open D with piecewise smooth boundary.

Clearly, the graphical construction yields then a version of the finite-volume con-
tour birth and death evolution (C). For each D denote by (γ D

s )s∈R the resulting
finite-volume stationary process on the space F(CD) of finite contour configura-
tions in D and write (�D

s )s∈R for the corresponding free process. It follows by
Theorem 2 in Ref. 15 that γ D

s coincides in distribution with A[β]
D for each s ∈ R.

Likewise, �D
s coincides in distribution with P

�
[β]
D

.

By representing the measures �
[β]
D as the corresponding restrictions of �[β]

we obtain a natural coupling of all the processes γ D
s , �D

s , γs and �s on a common
probability space. We shall also consider A[β]

D coupled on the same probability

space by putting A[β]
D = γ D

0 . Likewise, we put A[β] = γ0, P�[β] = �0, P
�

[β]
D

=
�D

0 . This coupling, referred to as the canonical coupling in the sequel, will be
assumed without a further mention throughout this paper.

A simple yet useful application of this coupling is that

∣∣∣Area(D)M[β] − EMD

(
A[β]

D

)∣∣∣ = O(Area(∂ D ⊕ B2(1)))

with ⊕ standing for the usual Minkowski addition [i.e. X ⊕ Y := {x + y | x ∈
X, y ∈ Y }]. Indeed, this is immediately seen by observing that, in view of Lemma
1.1 and (1.7) stating the exponential tail decay for ancestor clan diameters, under
the canonical coupling of A[β]

D and A[β], the probability that a given point x ∈ D
is assigned different colours by these ensembles decays as exp (−�(dist(x, ∂ D))).
Integrating over D and using (1.3) we obtain the required relation.
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1.2.2. Modifications of the Basic Graphical Construction

Below we discuss a number of modifications of the graphical construction,
which will be of use for our further purposes. Apart from the area-interacting
modifications all the remaining ones can be defined on the probability space of
the basic construction, thus extending the canonical coupling.

Imposing Forbidden Regions. A particular property of the graphical
construction which will be crucial for our further purposes is that it admits, on
the same probability space, conditional versions on the events of the type no
contour of the polygonal field hits [intersects] a given region U . Indeed, let U be a
bounded subset of the plane R

2. Then, adding the rule that all new-born contours
hitting U [intersections of U only with the interior of a contour are not taken
into account] be immediately discarded, to the trimming procedure constructing
(γs) out of (�s) or, equivalently, to the dynamics (C), we obtain a stationary and
reversible process (γs:U ) easily seen to enjoy the property that the distribution
of γs:U for each fixed s coincides with the law of A[β] conditioned on the event
thatA[β] ∩ U = ∅. PutA[β]

R
2:U

:= γ0:U . Likewise, we define the conditioned version

(γ D
s:U ) of the finite volume process (γ D

s ) for which the distribution of γ D
s:U coincides

for each s ∈ R with the law of A[β]
D conditioned on {A[β]

D ∩ U = ∅}. We put

A[β]
D:U := γ D

0:U . In full analogy with the similar discussion above, the conditioned

field A[β]
R

2:U
is stochastically bounded by the Poisson contour process P�[β]:U :=

{θ ∈ P�[β] | θ ∩ U = ∅}. Likewise, A[β]
D:U is stochastically bounded by P

�
[β]
D :U :=

{θ ∈ P
�

[β]
D

| θ ∩ U = ∅}.

Cut-Off Ensembles. An important family of processes we embed into
the original graphical construction are the cut-off ensembles for A[β]. They are
defined as follows. For a positive cut-off threshold α and a bounded region V ⊆ R

2

we consider the measure �[β];α,V which is the restriction of �[β] to the family of
polygonal contours which either do not hit V, or if they do hit V then their diameter
does not exceed α. In this context, it is convenient to say that a contour γ is α-large
iff diam(γ ) > α and that it is α-small otherwise. Using �[β];α,V instead of �[β]

for the contour birth intensity in the graphical construction we obtain α-cut-off
version (γ R

2;α,V
s )s∈R of the process (γs)s∈R (equivalently, we can simply reject all

α-large contours hitting V upon their birth in the original graphical construction,

which naturally extends the canonical coupling). Put A[β];α,V := γ
R

2;α,V
0 . It is

easily seen that the α-cut-off polygonal field A[β];α,V := γ
R

2;α,V
0 coincides in law

with A[β] conditioned on the event that no contour hitting V has its diameter larger
than α. Likewise, we consider with obvious definition the finite volume cut-off
processes (γ D;α,V

s )s∈R for open and bounded D with piecewise smooth boundary.
Clearly, the finite volume α-cut-off polygonal field A[β];α,V

D := γ
D;α,V

0 arises as
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A[β]
D conditioned on the event that no contour hitting V is α-large. In analogy with

the similar discussion above, the cut-off field A[β];α,V is stochastically dominated
by P�[β];α,V and A[β];α,V

D is stochastically dominated by P
�

[β];α,V
D

.

Clearly, we can combine the cut-off operation with imposing a forbidden

region which leads to processes γ
R

2;α,V
s:U , γ

D;α,V
s:U ,A[β];α,V

R
2:U

andA[β];α,V
D:U with obvious

definitions, stochastically dominated by P�[β];α,V :U and P
�

[β];α,V
D :U respectively. The

canonical coupling is extended in the obvious way.

Area-Interacting Fields. The final modification considered involves in-
troducing an area-order term to the Hamiltonian of (1.2). To this end, for a bounded
region W ⊆ R

2 and h ∈ R we consider the polygonal field A[β,h]
W on W , given in

distribution by

dL
(
A[β,h]

W

)
dL(A[β] ∩ W )

[γ ] = exp(hMW (γ ))

E exp(hMW (A[β]))
.

Note that, unlike A[β]
D , the field A[β,h]

W is defined as a Gibbsian modification of the
thermodynamic limit A[β] restricted to W rather than as a Gibbsian modification
of the finite volume field AW . In particular, the laws of the fields A[β,0]

W and A[β]
W

do not coincide; in fact A[β,0]
W coincides in distribution with A[β] ∩ W. We will

mainly use the area-interacting modification combined with the cut-off operation.
The field A[β,h];α,V

W is given in law by

dL
(
A[β,h];α,V

W

)
dL(A[β];α,V ∩ W )

[γ ] = exp(hMW (γ ))

E exp(hMW (A[β];α,V ))
. (1.8)

To proceed with the graphical construction we assume that

|h| ≤ β

π2α
(1.9)

and observe that adding a single α-small contour θ to a contour configuration
γ, γ ∩ θ = ∅, can change the magnetisation MW (γ ) by with γ standing for the
current contour most π length(θ )2/2 whence the value of hMW (γ ) can change by
at most β length(θ )/2. With γ standing for the current contour configuration, we
modify the original graphical construction by

• constructing the free birth and death process �̂s , s ∈ R, with birth intensity
measure �[β/2];α,V and death intensity 1,

• at the trimming stage, by accepting a time-space contour instance θ ×
[s0, s1)

- with probability 0 if θ hits θ ′ for some previously accepted contour
instance θ ′ × [s ′

0, s ′
1) alive at time s0,
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- with probability exp
(
− β

2 length(θ ) + h[MW (γ ∪ θ ) − MW (γ )]
)

otherwise.

Observe that the last probability falls into (0, 1] because of (1.9). Denote
the resulting trimmed process by γ̂s . The validity of this construction requires a
justification. In fact, we have to redefine here the notion of an ancestor clan. We
set a directed connection from a contour instance θ∗ = θ × [s0, s1) to all contour
instances θ ′∗ = θ ′ × [s ′

0, s ′
1) such that Intθ ∩ Intθ ′ �= ∅ (which is weaker than the

condition θ ∩ θ ′ �= ∅ of the original definition) and s ′
0 ≤ s0, s ′

1 > s0. Clearly, these
are all contour instances which may affect the acceptance status of θ∗. The union
of all the directed chains stemming from θ∗ is called the ancestor clan of θ∗

and denoted by Ân(θ∗). Likewise, for s ∈ R and W ⊆ R
2 we write Âns(U ) for the

union of all the ancestor chains of contour instances θ × [s0, s1) alive at time s (i.e.
s0 ≤ s < s1) and such that Intθ ∩ U �= ∅. In full analogy with (1.7), Lemma 1.1
guarantees that for β large enough (larger than some β̂g) we have

P(diam Âns(B2(x, 1)) > R) ≤ exp(−cR), s ∈ R, x ∈ R
2, (1.10)

for some c = c(β) > 0. Clearly, this implies that the ancestor clans are a.s. finite,
thus ensuring the validity of the construction. In the sequel we shall always assume
that β > β̂g so that (1.10) holds. It follows by the general theory developed
by Fernández, Ferrari and Garcia,(9−11) that so constructed γ̂s for each fixed s
coincides in law with A[β,h];α,V

W . Moreover, it is easily seen that, for each s ∈ R, �̂s

coincides in law with the Poisson contour process P�[β/2];α,V ∩ W. Consequently,
the almost sure inclusion γ̂s ⊆ �̂s yields the stochastic domination of A[β,h];α,V

W by
P�[β/2];α,V ∩ W.

Clearly, the above construction can be easily extended to take into account
forbidden regions. For bounded measurable U ⊆ R

2 denote byA[β,h];α,V
W :U the polyg-

onal fields arising by conditioning A[β,h];α,V
W on none of its contours hitting U. It

is easily seen that A[β,h];α,V
W :U can be represented by the graphical construction of

this paragraph, with the additional rule that all contours hitting U be immediately
discarded. In analogy with a similar observation made above for A[β];α,V

W , also

here it should be noted that A[β,0];α,V
W :U coincides in law with A[β];α,V

R
2:U

∩ W rather

than with A[β];α,V
W :U .

Moreover, in full analogy with the argument above, we see that A[β];α,V
W :U is

stochastically dominated in the sense of inclusion by the Poisson contour process
P�[β/2];α,V :U ∩ W.

Note that the above construction provides a natural coupling for area-
interacting fields with cut-off and (possibly) forbidden regions imposed, under
the constraint (1.9). To distinguish it from the canonical coupling available for
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fields with no area interaction as discussed above, we shall call this coupling the
canonical coupling for area-interacting fields.

1.3. Surface Tension

The purpose of this section is to define the surface tension functional specific
for our model. To this end, for a given bounded and convex domain D ⊆ R

2

and δ > 0 we consider the family Cx↔y;δ
D of self-avoiding polygonal paths in D

connecting the balls B2(x, δ) ⊆ D and B2(y, δ) ⊆ D, with the additional property
that the first and last segments of the paths do not intersect the interiors of the balls
B2(x, δ) and B2(y, δ) respectively, but they do touch their respective boundaries
and the intersection points coincide with the initial and final point of the path. In
other words, moving along a path in Cx↔y;δ

D we travel from ∂B2(x, δ) to ∂B2(y, δ),
with the initial segment falling outside B2(x, δ) and with the final segment outside
B2(y, δ), which does not prevent us though from passing through B2(x, δ) and
B2(y, δ) along the remaining segments. Next, we introduce on Cx↔y;δ

D the free
measure �

x↔y;δ
D , constructed in full analogy with the definition of the free contour

measure as given in (1.4). For a finite configuration (l) of straight lines crossing
D write Cx↔y;δ

D (l) for the collection of those paths in Cx↔y;δ
D which only contain

segments of the lines in (l) and exactly one non-zero length segment on each line.
For measurable C ⊆ Cx↔y;δ

D we put

�
x↔y;δ
D (C) =

∫
Fin(L[D])

∑
θ∈C∩Cx↔y;δ

D (l)

exp(−2 length(θ ))dµ∗((l)) (1.11)

with Fin(L[D]) and µ∗ as in (1.4). Note that the initial point and the endpoint
of the path θ in the above definition are uniquely determined, respectively as the
intersection of the first and last segment of the path with ∂B2(x, δ) and ∂B2(y, δ).
Likewise, we define the β-tilted measures [�x↔y;δ

D ][β] by[
�

x↔y;δ
D

][β]
(dθ ) := exp(−β length(θ ))�x↔y;δ

D (dθ ). (1.12)

As observed above for the free contour measures, also the path measures
are consistent in that �

x↔y;δ
D = [�x↔y;δ

D′ ]|D for D ⊆ D′ and, consequently, we can
construct the whole plane free measure �x↔y;δ and its tilted version [�x↔y;δ][β],

both defined on Cx↔y;δ = Cx↔y;δ
R

2 := ⋃∞
n=1 C

x↔y;δ
(−n,n)2 .

To proceed, write

T [β]
(δ) [x ↔ y] :=

∫
Cx↔y;δ

P(A[β] ∩ θ = ∅)[�x↔y;δ][β](dθ ). (1.13)

Put ex := (1, 0), fix some small δ > 0 and let

τ
[β]
λ := −1

λ
log T [β]

(δ) [0 ↔ λex ]. (1.14)
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The surface tension is defined as the limit

τ [β] := lim
λ→∞

τ
[β]
λ = − lim

λ→∞
1

λ
log T [β]

(δ) [0 ↔ λex ]. (1.15)

It is clear that the asymptotic behaviour of τ
[β]
λ as λ → ∞ does not depend on

the choice of δ above – indeed, changing δ is easily seen to result only in a bounded
and uniformly non-zero prefactor before T [β]

(δ) [0 ↔ λex ], which is negligible in the
logarithmic large λ asymptotics. This is why our notation does not take into account
the dependency of τ

[β]
λ on δ. The existence, finiteness and strict positivity of the

limit in (1.15) for β large enough and other properties of the surface tension are
discussed in Sec. 5 below, see Lemma 5.3 there.

1.4. Main Results

Our main result below states that, at low enough temperatures, conditioning
the white-dominated phase of polygonal Markov field to contain black-coloured
regions of total area exceeding its expectation by an area-order quantity results
in aggregation of the excess black area and in formation of a macroscopic-size
disk-shaped region (Wulff crystal) of black-dominated phase, separated from the
outside white phase by a single large contour. Moreover, the probability of such
area-order black exceedances exhibits perimeter-order exponential decay.

As shown in Sec. 2 below, for α � log L with overwhelming probability there
are no α-large contours of A[β] in B2(L). Thus, it is natural to consider the regions
separated by �(log L)-large contours of A[β] and to assign them, in the obvious
way, black or white phase labels. In this language, we show in this paper that the
single large contour determining the Wulff shape encloses a disk-shaped portion
of black-labeled phase region surrounded by ocean of white-labeled phase.

As already discussed in the introductory section, since our main results are
formulated directly under boundary conditions induced by the thermodynamic
limit A[β] rather with periodic or monochromatic boundary conditions, we have to
explicitly rule out the situation where the phase separating curves cross or go along
the boundary of the considered finite volume region B2(L). To this end, for α > 0
shall write N [α, L] for the event that no α-large contour of A[β] gets closer than
at the distance 6α to the circle S1(L) := ∂B2(L). In what follows we shall write

α[L] :=
√

L log L . (1.16)

Our main result is the following theorem.

Theorem 1.2. For 0 < a < 2π |M[β]| we have

P(ML (A[β]) ≥ M[β]π L2 + aL2, N [α[L], L] holds)

= exp

(
−
√

2πa

|M[β]| Lτ
[β]
α[L] + O(α[L])

)
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= exp

(
−
√

2πa

|M[β]| Lτ [β] + o(L)

)
. (1.17)

Moreover, there exists a constant Clarge such that on the event{
ML

(
A[β]

) ≥ M[β]π L2 + aL2, N [α[L], L] holds
}
,

for sufficiently large L we have with probability arbitrarily close to 1

• There is exactly one Clarge log L-large contour θlarge,
• This θlarge satisfies

min
x

ρH

(
θlarge, S1

(
x, L

√
a

2π |M[β]|
))

= O
(

L3/4
√

log L
)

,

with ρH standing for the usual Hausdorff distance.

Note that in the sequel we shall refer to the condition ML

(
A[β]

) ≥
M[β]π L2 + aL2 as to the micro-canonical constraint.

The remaining part of the paper is the proof of Theorem 1.2 and is organised
as follows. In Sec. 2 below we establish upper bounds on occurrence probabilities
of large contours. Next, in Sec. 3 we study moderate deviation probabilities for
cut-off contour ensembles of polygonal fields. Section 4 provides a simple yet
important lemma allowing us to factorise the avoidance probabilities of A[β] over
disjoint regions. This is followed by Sec. 5 dealing with properties of the surface
tension, and then by Sec. 6, where we establish coarse-graining skeleton estimates.
The complementary lower bounds for occurrence probabilities of large contours
are stated in Sec. 7. Finally, in Sec. 8 we complete the proof of Theorem 1.2 by
putting together the results of previous sections.

2. EXPONENTIAL TIGHTNESS BOUNDS

In this section we show that although the total length of the contour ensemble
A[β] ∩ B2(L) is clearly of the area order �(L2), this is due to the contributions
of O(log L)-small contours, while the contribution of �(log L)-large contours
is of order O(1) with the corresponding large deviation probabilities exhibiting
exponential decay. To put it in formal terms, with α > 0 not necessarily given by
(1.16), write Lα,L := Lα,L

[
A[β]

]
for the family of α-large contours of A[β] hitting

B2(L) and, in general, let Lα,L [γ ] stand for the family of α-large contours of a
contour collection γ which hit B2(L). We claim that

Lemma 2.1. For each κ < β/2 − 2 there exist M, C = C(β, κ) < ∞ such that
for all α > C log L and λ > 0 we have

P (length(Lα,L ) > λ) ≤ M exp(−κλ)
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and the same applies for Lα,L replaced with Lα,L [A[β];α,·
· ], Lα,L [A[β];α,(·)

(·):(·) ] and

Lα,L [A[β,h];α,(·)
(·) ], Lα,L [A[β,h];α,(·)

(·):(·) ] for h within the validity range of (1.9).

Note that it is natural to regard this lemma as an exponential tightness state-
ment for length(Lα,L ), whence the title of the section.

Proof: We provide the proof for the polygonal fieldA[β] only, since the argument
goes exactly along the same lines for all the modified fields obtained from the
variants of the graphical construction discussed in Subsubsec. 1.2.2 and admitting
stochastically dominating Poisson contour processes. Note that the assumption κ <

β/2 − 2 was imposed for the purpose of dealing with area-interacting processes
with the external field h within the validity range of (1.9), which admit stochastic
domination by the Poisson contour process P�[β/2] . For the remaining polygonal
fields considered in the statement of the lemma, with no area interaction, a stronger
stochastic domination by P�[β] is available and the assertion of the lemma still
holds if we choose κ < β − 2 rather than κ < β/2 − 2.

To proceed, use the graphical construction to conclude that the total length of
contours in Lα,L is stochastically bounded by the total length of α-large contours
of P�[β/2] hitting Lα,L . Thus, by the definition of a Poisson point process,

E exp(κ length(Lα,L ))

≤ exp

[∫
{θ∈C | θ∩B2(L)�=∅, θ is α-large }

(eκ length(θ) − 1)d�[β/2](θ )

]

≤ eκαζ (α) + κ

∫ ∞

α

eκλζ (λ)dλ,

where the last inequality follows by integration by parts with

ζ (λ) := �[β/2]({θ ∈ C | θ ∩ B2(L) �= ∅, length(θ ) > λ}).
In view of Lemma 1.1 this means that

E exp(κ length(Lα,L )) ≤ exp

[
C1(β, κ)L2 exp

([
κ + 2 − β

2

]
α

)]
with some constant C1(β, κ). Thus, using Markov inequality we get

P(length(Lα,L ) > λ) ≤ E exp (κ length(Lα,L ))

exp(κλ)

≤ exp

[
C1(β, κ)L2 exp

([
κ + 2 − β

2

]
α

)]
e−κλ

which completes the proof of the lemma for α > C log L with large enough
C = C(β, κ). �
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3. MODERATE DEVIATIONS FOR CUT-OFF ENSEMBLES

The current section deals with the properties of the cut-off ensembles A[β];α,V

arising by conditioning the original field A[β] on containing no α-large contours
hitting V ⊆ R

2. Recall that we assume here that β > βg and β > β̂g so that β

falls into the validity regions of the graphical construction discussed in Subsec. 1.2
as well as of its area-interacting modification discussed in Subsubsec. 1.2.2. We
consider α not necessarily given by (1.16). Our first observation is that imposing
a cut-off does not change the expected magnetisation by too much∣∣π L2

M[β] − EML

(
A[β];α,B2(L)

)∣∣ = O(L4 exp(−cα)) (3.18)

with some c > 0. Indeed, this follows by the fact that, in view the stochastic
domination of A[β] by P�[β] and in view of Lemma 1.1, an α-large contour shows
up in A[β] ∩ B2(L) with probability O(L2 exp(−cα)), whence conditioning on
the absence of this event can change the probabilities of other events by at most
O(L2 exp(−cα)), consequently the variational distance between the laws L(A[β])
and L(A[β];α,B2(L)) is of the same order O(L2 exp(−cα)). To get (3.18) it suffices
now to observe that the magnetisation over B2(L) is a.s. bounded in absolute value
by π L2.

Another useful observation is that the impact of imposing a forbidden region
for cut-off ensembles can also be very well controlled. In formal terms, we claim
that for a collection γ of α-large contours, α > 1, in B2(L) we have∣∣∣EML

(
A[β];α,B2(L)

) − EML

(
A[β];α,B2(L)

R
2:γ

)∣∣∣ = O (Area(γ ⊕ B2(1)))

= O (length(γ )) . (3.19)

This is an immediate consequence of the fact that, by (1.7), under the canoni-
cal coupling of A[β];α,B2(L) and A[β];α,B2(L)

R
2:γ

the probability that the colours assigned

to a given point x by these ensembles differ, is of order O(exp(−c dist(x, γ ))),
c > 0.

The argument leading to (3.18) and (3.19) above can be easily modified to
yield the following combination of these relations. Let γ be a collection of α-large
contours in B2(L). Then∣∣EML

(
A[β];α,B2(L)

R
2;γ

∪ γ
) − |M[β]|ML (γ )

∣∣ = O(length(γ )) (3.20)

provided α ≥ C log L for sufficiently large C.

The main result of this section is the following moderate deviation bound

Theorem 3.1. For each β large enough there exists a positive constant
C1 = C1(β) such that, uniformly in L , α ≥ C1 log L and in finite collections γ
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of polygonal contours in R
2 we have for all 0 < A ≤ C−1

1 L2/ log L

P
(∣∣ML

(
A[β];α,B2(L)

R
2:γ

∪ γ
) − EML

(
A[β];α,B2(L)

R
2:γ

∪ γ
)∣∣ > A

)
≤ exp

(
−c

[
A2

L2
∧ A

α

])

with some constant c > 0.

Proof: Write

µα
L ,γ := ML

(
A[β];α,B2(L)

R
2:γ

∪ γ
)

and let

µα
L = µα

L ,∅ = ML

(
A[β];α,B2(L)

)
, µL = µ∞

L = ML

(
A[β]

)
.

For h ∈ R consider the partition function

Z [h] := E exp
(
hµα

L ,γ

)
The following estimate, valid for all h satisfying (1.9), is the crucial ingredient of
our proof:

log Z [h] ≤ hEµα
L ,γ + h2L2σ 2/2 (3.21)

for some σ > 0, uniformly in L , γ, α and h within the validity region of (1.9). To
see that (3.21) suffices to complete the proof of the theorem, take first 0 < A ≤
βL2σ 2

π2α
, put h := A

σ 2 L2 which clearly satisfies (1.9), and then use Markov’s inequality
to conclude that

P
(
µα

L ,γ > Eµα
L ,γ + A

) ≤ Z [h]

exp(h(Eµα
L ,γ + A))

≤ exp(h2L2σ 2/2 − Ah) = exp

(
− A2

2σ 2 L2

)
. (3.22)

Next, for A >
βL2σ 2

π2α
choose κ < β/2 − 2 and C(β, κ) as in Lemma 2.1 and

assume that C1 in the present lemma is chosen so that α̃ := 2C(β, κ) log L < α.

Then, on the event {µα
L ,γ > Eµα

L ,γ + A}
there are two possible scenarios:

• The total length of α̃-large contours in Lα̃,L (A[β];α,B2(L)

R
2:γ

) exceeds 2A
πα

, which

can happen with probability at most M exp
(− 2κ A

πα

)
by the exponential

tightness Lemma 2.1,
• The total length of α̃-large contours in Lα̃,L (A[β];α,B2(L)

R
2:γ

) does not exceed
2A
πα

. Since 8
πα

is the lower bound for the length-to-enclosed-area ratio for
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an α-small contour, this means in particular that the total area enclosed
by α̃-large contours of A[β];α,B2(L)

R
2:γ

falls below A/4. Denoting by γ̃ the

family of contours Lα̃,L

(
A[β]; αB2(L)

R
2 : γ

) ∪ γ and taking into account
that the change of magnetisation induced by adding a contour is bounded
in absolute value by twice the area it encloses, conditionally on given γ̃ ,
we are led to

Eµα̃
L ,γ̃ ≤ EML

(
A[β];α̃,B2(L)

R
2:γ̃

∪ γ
)

+ A/2.

Now, in full analogy with (3.19), on the considered event we get,∣∣∣EML

(
A[β];α̃,B2(L)

R
2:γ̃

∪ γ
)

− Eµα̃
L ,γ

∣∣∣ = O

(
2A

πα

)
.

Next, in full analogy with (3.18), we have∣∣Eµα̃
L ,γ − µαL ,γ

∣∣ = O(L4 exp(−cα̃))

which goes to 0 faster than the inverse of any polynomial under appropriate
choice of Cβ, κ in Lemma 2.1. Putting the above relations together we
conclude that

Eµα̃
L ,γ̃ ≤ Eµα

L ,γ + A/2(1 + 0(1)).

Recalling that µα
L ,γ given γ̃ coincides in law with µα̃

L ,γ̃ , we are led to

P
(
µα

L ,γ > E
α
L ,γ |γ̃ )

≤ P
(
µα̃

L ,γ̃ > E
α̃
L ,γ̃ + A/2(1 − o(1))

)
.

Now, choosing C1 so that A ≤ βL2σ 2

π2α̃
, we can bound above the last prob-

ability by exp(− A2

8σ 2 L2 ) applying (3.22) with α and γ replaced there by α̃

and γ̃ respectively.

Combining the above two points with (3.22) and noting that the probability of
{µα

L ,γ < Eµα
L ,γ − A} can be dealt with in a completely analogous way, we obtain

the assertion of the theorem.
It remains to verify (3.21) for h satisfying (1.9). We extend the notation by

putting

µ
α,h
L ,γ := ML

(
A[β,h];α,B2(L)

B2(L):γ ∪ γ
)

.

Noting that

∂

∂h
log Z [h] = Eµ

α,h
L ,γ ,

∂2

∂h2
log Z [h] = Var[µα,h

L ,γ ] (3.23)

and
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Taylor expanding the logarithm of the partition function up to the second
order term yields

log Z [h] = hEµα
L ,γ + h2

Var[µα,h∗
L ,γ ]

2
(3.24)

for some h∗ between 0 and h. We claim that, uniformly in L , α, γ and h satisfying
(1.9), the variance Var[µα,h

L ,γ ] is of the area order O(L2)

Var[µα,h
L ,γ ] = O(L2), (3.25)

which, once established, will immediately yield the required relation (3.21) as a
conclusion of (3.24). To prove (3.25) we show that, for U1, U2 ⊆ B2(L), uniformly
in γ and in h satisfying (1.9)

Cov
[
MU1

(
A[β,h];α,B2(L)

B2(L):γ ∪ γ
)
; MU2

(
A[β,h];α,B2(L)

B2(L):γ ∪ γ
)]

= O
(
Area(U1)Area(U2)[Area(U1 ⊕ B2(1))

+ Area(U2 ⊕ B2(1))]e−c dist(U1,U2)
)

(3.26)

for a positive constant c, with ⊕ standing for the usual Minkowski ad-
dition. Indeed, with the representation provided by the graphical construc-
tion for area-interacting fields in Subsubsec. 1.2.2, conditionally on the
event {Ân0(U1) ⊆ U1 ⊕ B2( dist(U1,U2)

2 ), Ân0(U2) ⊆ U2 ⊕ B2( dist(U1,U2)
2 )} the ran-

dom variables MU1 (A[β,h];α,B2(L)
B2(L):γ ∪ γ ) and MU2 (A[β,h];α,B2(L)

B2(L):γ ∪ γ ) are indepen-
dent. But in view of (1.10) the probability of this event does not fall below
1 − O([Area(U1 ⊕ B2(1)) + Area(U2 ⊕ B2(1))] exp(−c dist(U1, U2))). This ob-
servation combined with the fact that |MUi (A

[β,h];α,B2(L)
B2(L):γ )| ≤ Area(Ui ), i = 1, 2

implies (3.26). The required relation (3.25) follows now from (3.26) by usual
argument based on splitting B2(L) into �(L2) disjoint regions of diameter and
area �(1) and then noting that, with the magnetisation contributions coming from
distant regions exhibiting exponentially decaying covariances, the asymptotic or-
der of the total magnetisation variance Var[µα,h

L ,γ ] is determined by the sum of
covariances between regions within distance �(1) from each other, which yields
the desired order O(L2). The proof is complete. �

Remark 3.2. We note that the bounds in Theorem 3.1 are of optimal order only for
the probabilities of positive deviations {µα

L ,γ > Eµα
L ,γ + A}, A > 0. We believe

that the probabilities of negative moderate deviations {µα
L ,γ < Eµα

L ,γ − A} as well

as {µL < EµL − A}, A � L2, exhibit Gaussian-type decay exp(−�(A2/L2)) as
in classical moderate deviation regime, in full analogy with similar phenomenon
for the Ising model, see, Ref. 8, (1.1.2), (2.3.2) in Ref. 12 or Sec. 3.3.1 in Ref. 6 and
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the references therein. Since this falls beyond the context of our further argument,
we do not discuss this issue in the present paper.

As an easy corollary from Theorem 3.1 we conclude that

Corollary 3.3. With A, α and γ as in Theorem 3.1 we have uniformly

P

(∣∣∣ML

(
A[β]

R
2:γ

∪ γ
)

− EML

(
A[β]

R
2:γ

∪ γ
)∣∣∣ > A

)

≤ exp

(
−c

[
A2

L2
∧ A

α

])
∨ O(L2 exp(−cα))

with some constant c > 0.

Proof: This is a direct conclusion of Theorem 3.1 combined with the observation
that the variational distance between the laws L(A[β] ∩ B2(L)) and L(A[β];α,B2(L))
is of order O(L2 exp(−cα)), as shown in the argument leading to (3.18)
above. �

Another useful corollary relies on a straightforward observation that the proof
of Theorem 3.1 applies with only minor modifications for A[β];α,B2(L) replaced by
A[β,h];α,B2(L)

B2(L) with |h| ≤ H/α, H small enough. In formal terms,

Corollary 3.4. With H > 0 small enough, for each β large enough there exists
a positive constant C = C(β, H ) such that, uniformly in L , α ≥ C log L , finite
collection γ of polygonal contours in R

2 and |h| ≤ H/α, we have for all 0 < A ≤
C−1L2/ log L

P

(∣∣∣ML

(
A[β,h];α,B2(L)

B
2(L):γ

∪ γ
)

− EML

(
A[β,h];α,B2(L)

B
2(L):γ

∪ γ
)∣∣∣ > A

)

≤ exp

(
−c

[
A2

L2
∧ A

α

])

with some constant c > 0.

We omit the proof of this corollary which is just a simple repetition of the
proof of Theorem 3.1.

Below, we provide some further auxiliary results related to moderate devia-
tion probabilities for cut-off ensembles. Note first that we can establish a bound
analogous to (3.25) for the third cumulant of µ

α,h
L ,γ :

∂3

∂h3
log Z [h] = O(L2) (3.27)
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uniformly in α, L , finite contour collection γ and h satisfying (1.9). We omit the
details of the argument, based on the relation (1.10), since it goes along the same
lines as the proof of Lemma 5.3 in Baryshnikov and Yukich(5) (valid for arbitrary
order cumulants in fact). In particular, in view of (3.23) combined with (3.27), we
get for h within the validity range of (1.9)

Eµ
α,h
L ,γ = Eµα

L ,γ + hVar[µα
L ,γ ] + O(h2L2) (3.28)

uniformly in L , γ . To proceed, assume that γ is a finite contour collection in
B2(L) with Area(γ ⊕ B2(log2 L)) ≤ L2/log L . We claim that under this condition
we have (3.25) strengthened to

Var[µα
L ,γ ] = �(L2) (3.29)

uniformly in γ, L . Indeed, observe that by (1.7) the probability of the event
{An0(γ ) �⊆ γ ⊕ B2(log2 L)} is of order at most O(L2 exp(−c log2 L)), c > 0,

whence under the canonical coupling with probability 1 − O(L2 exp(−c log2 L))
the field A[β];α,B2(L)

R
2:γ

coincides with A[β];α,B2(L) over the whole complement of

γ ⊕ B2(log2 L). Consequently,

|Var[µα
L ] − Var[µα

L ,γ ]| = o(L2).

Now, mimicking the proof of (3.18) we check that

|Var[µα
L ] − Var[µL ]| = O(L6 exp(−cα)) = o(L2)

provided α ≥ C log L with C large enough. This will yield the required relation
(3.29) as soon as we show that for the field A[β] the variance of magnetisation has
the required order

Var[µL ] = �(L2). (3.30)

To this end, we fix some large λ > 0, large k ∈ N and small ε > 0 and we note
that

inf
{

Var
[
MD

(
A[β]

D

)] | Area(D) ≥ ελ2, card Vertices(D) ≤

k, length(∂ D) ∈ [ελ, ε−1λ]
}

> 0, (3.31)

with the infimum taken over all bounded domains D with polygonal bound-
ary, possibly chopped off by intersecting with B2(L). Indeed, this can be
proven by observing first that the mapping D �→ φ(D) := Var[MD(A[β]

D )] ad-
mits only strictly positive values and it is continuous with respect to the pseudo-
metric ρ∗

H (D1, D2) := inf x∈R
2 ρH (D1, x + D2). Thus, putting D[λ, k, ε] :=

{D | Area(D) ≥ ελ2, cardVertices(D) ≤ k, length(∂ D) ∈ [ελ, ε−1λ]} and not-
ing that D[λ, k, ε] is compact in ρ∗

H , we see that φ0 := inf D∈D[λ,k,ε] φ(D) > 0,

which yields the required relation (3.31). To proceed, note that the variance Var[µL ]
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in (3.30) is bounded below by the expectation of the conditional variance of µL

given the ensemble of external (outermost) contours θ in A[β] ∩ B2(L) satisfying
the constraints of the infimum in (3.31) for D := Intθ. Thus, taking into account
that given the presence of such θ the behaviour of the process A[β] inside θ is
independent of that outside θ and then using (3.31) to conclude that each such θ

present brings a contribution of at least φ0 to the considered conditional variance,
we have Var[µL ] bounded below by φ0 times the expected number of external con-
tours θ in A[β] ∩ B2(L) as in (3.31) with D = Intθ. Since this number is clearly
of the area order �(L2), the required relation (3.30) has been established, which
completes the argument for (3.29).

Putting together (3.28) and (3.29) and the observations that h = o(1) by (1.9)
and that Eµ

α,h
L ,γ strictly increases with h we come to

Corollary 3.5. There are positive constants K0 = K0(β) and C = C(β) such
that for each α ≥ C log L , each � with |�| ≤ K0L2/α and each finite contour
collection γ with Area(γ ⊕ B2(log2 L)) ≤ L2/ log L there exists a unique value
h = h[�, L , γ ] of external magnetic field such that

Eµ
α,h
L ,γ = Eµα

L ,γ + �

and

h = �(�/L2)

uniformly in α,�, L , γ .

Our next statement provides a lower bound for moderate deviation probabil-
ities of µα

L ,γ , complementary to the upper bound of Theorem 3.1.

Lemma 3.6. For all 0 ≤ � � L2/α, with α and γ as in Corollary 3.5 and with
α � L/ log L we have uniformly in �,α, L , γ

P
(
µα

L ,γ > Eµα
L ,γ + �

) ≥ exp(−O([� + L log L]2/L2)).

Proof: Write using Corollary 3.5, putting for brevity h[·] := h[·, L , γ ],

P
(
µα

L ,γ > Eµα
L ,γ + �

) ≥ P
(|µα

L ,γ − Eµα
L ,γ − � − L log L| < L log L

)
≥ exp

(−h[� + L log L][Eµα
L ,γ + � + 2L log L]

)
E

× exp
(
h[� + L log L]µα

L ,γ

)
P

(∣∣∣µα,h[�+L log L]
L ,γ − Eµ

α,h[�+L log L]
L ,γ

∣∣∣ < L log L
)

and use Jensen’s inequality to bound it below by

P

(∣∣∣µα,h[�+L log L]
L ,γ − Eµ

α,h[�+L log L]
L ,γ

∣∣∣ < L log L
)

exp(−h[� + L log L][� + 2L log L]).
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Thus, taking into account that h[� + L log L] = �([� + L log L]/L2) by
Corollary 3.5 and that P(|µα,h[�+L log L]

L ,γ − Eµ
α,h[�+L log L]
L ,γ | < L log L) = 1 − o(1)

in view of Corollary 3.1, completes the proof of the lemma. �

4. DECOUPLING LEMMA

The purpose of this section is to establish Lemma 4.1 stating that the avoid-
ance probabilities for the field A[β] over disjoint regions can be very well approx-
imated by the product of the corresponding avoidance probabilities for individual
regions. Even though this lemma is a direct conclusion from the graphical con-
struction, we state it in a separate section due to its importance in our further
argument.

Lemma 4.1. Assume that U1, U2, ..., Uk, k ≥ 1 are disjoint bounded regions in
R

2 such that mini �= j dist(Ui , U j ) > � � log[k supk
i=1 diam(Ui )]. Then, for some

C > 0 we have

P


A[β] ∩

k⋃
j=1

U j = ∅



=
(

1 + O

(
(log k)e−C�

k∑
i=1

Area(Ui ⊕ B2(1))

))
k∏

j=1

P
(
A[β] ∩ U j = ∅) .

Proof: The exponential decay of ancestor clan sizes in the graphical construction
(1.7) yields

P(Ec
i ) = O(Area(Ui ⊕ B2(1)) exp(−C�)), i = 1, . . . , k (4.32)

with

Ei := {An0(Ui ) ⊆ [Ui ⊕ B2(�/2)]}.
Write I j , j = 1, ..., k for the event

I j := {A[β] ∩ U j = ∅}
and use the canonical coupling of the graphical construction for A[β] with the
conditional graphical construction for the fieldA[β]

R
2:[
⋃�k/2�

i=1 Ui ]
as provided in Sec. 1.2

to conclude that∣∣∣∣∣∣P

 k⋂

i=�k/2�+1

Ii

∣∣∣∣∣∣
�k/2�⋂
i=1

Ii

)
− P


 k⋂

i=�k/2�+1

Ii



∣∣∣∣∣∣ ≤ P

(
k⋃

i=1

Ec
i

)
. (4.33)
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Combining (4.32) with (4.33) leads to

P

(
k⋂

i=1

Ii

)
=
(

1 + O

(
k∑

i=1

Area(Ui ⊕ B2(1))e−C�

))

× P

(�k/2�⋂
i=1

Ii

)
P


 k⋂

i=�k/2�+1

Ii


 . (4.34)

The assertion of the lemma follows now by recursive application of (4.34). �

5. EXISTENCE AND PROPERTIES OF SURFACE TENSION

This section deals with the existence of the limit (1.15) defining the surface
tension functional specific for our model. The argument below relies on a number
of technical properties of the quantity T [β]

(·) [· ↔ ·] and is split into several subsec-
tions. Our main tool here is the random walk representation of surface tension,
stated in Lemma 5.1, and our main effort is concentrated on establishing the crucial
finite volume approximation Lemma 5.2. As everywhere in this paper, the results
below are valid for β large enough.

5.1. Optimising and Freezing Initial Segments

It will be convenient for our further purposes to switch between several al-
ternative but asymptotically equivalent variants and representations of the surface
tension. In this subsection we argue that modifying and freezing the directions of
the initial segments of the polygonal path in the original definition (1.13) of the
functional T [β]

(δ) [x ↔ y] does not alter its asymptotic behaviour for large dist(x, y).

To this end we consider a version T̂ [β]
(δ) [x ↔ y] of the quantity T [β]

(δ) [x ↔ y], which
arises as the supremum of the integrals as in (1.13), but in which the initial point of
the first segment is now allowed in the whole B2(x, δ) rather than just on ∂B2(x, δ),
the endpoint of the last segment is allowed in the whole B2(y, δ) rather than just
on ∂B2(y, δ), and the directions of both segments are fixed so that the integration
is carried out over the remaining segments only. It is easily checked that, provided
the distance between x and y is large enough,

C−1T [β]
(δ) [x ↔ y] ≤ T̂ [β]

(δ) [x ↔ y] ≤ CT [β]
(δ) [x ↔ y] (5.35)

for some C = C(β, δ) > 1 independent of D, x, y. Indeed, the impact of taking
the first and last segments fixed in the optimal way rather than integrating over
them is easily seen to be only confined to close neighbourhoods of the initial point
and the endpoint of the path, and can be compensated at a constant probability
cost by appropriately adjusting a small number of initial and final segments. We
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also consider finite volume versions T [β]
(δ;D) and T̂ [β]

(δ;D) of T [β]
(δ) and T̂ [β]

(δ) , putting in
analogy with (1.13)

T [β]
(δ;D)[x ↔ y] :=

∫
Cx↔y;δ

P(A[β] ∩ θ = ∅)[�x↔y;δ
D ][β](dθ )

and defining T̂ [β]
(δ;D) in the same way as T̂ [β]

(δ) with the additional requirement that
the whole path be contained in D. If the domain D contains neighbourhoods of x
and y (say, B2(x, 2δ) ⊆ D and B2(y, 2δ) ⊆ D), a relation analogous to (5.35) is
easily verified to hold for x and y far enough

C−1T [β]
(δ;D)[x ↔ y] ≤ T̂ [β]

(δ;D)[x ↔ y] ≤ CT [β]
(δ;D)[x ↔ y] (5.36)

with some C := C(β, δ) > 1 independent of D, x, y.

We close this subsection with one more quantity, to be of use in the sequel,
for which a relation analogous to (5.35) and (5.36) is valid. Write

ϑ
[β]
(δ) [x ↔ y] =

∫
Cx↔y;δ

[�x↔y;δ][β](dθ ) = [�x↔y;δ][β](Cx↔y;δ) (5.37)

and, as in the definition of T̂ [·]
(·) [· ↔ ·], let ϑ̂ [β]

(δ) [x ↔ y] be the supremum of integrals
as in (5.37), but with the initial point of the first segment now allowed in the whole
B2(x, δ) rather than just on ∂B2(x, δ), the endpoint of the last segment allowed
in the whole B2(y, δ) rather than just on ∂B2(y, δ), and the directions of both
segments fixed so that the integration is carried out over the remaining segments
only. Clearly, in full analogy to (5.35), we have with dist(x, y) large enough

C−1ϑ
[β]
(δ) [x ↔ y] ≤ ϑ̂

[β]
(δ) [x ↔ y] ≤ Cϑ

[β]
(δ) [x ↔ y] (5.38)

for some C = C(β, δ) > 1 independent of D, x, y.

5.2. Random Walk Representation

The quantity T [β]
(δ) [x ↔ y] admits a particularly useful interpretation in terms

of a killed continuum random walk in environment with random obstacles. To see
it consider a continuous-time random walk Zt ;B2(x,δ) := Zt in R

2 independent of
A[β] and governed by the following dynamics

• between critical events specified below move in a constant direction with
speed 1,

• with intensity given by 4 times the covered length element update the
movement direction, choosing the angle φ ∈ (0, 2π ) between the old and
new direction according to the density | sin(φ)|/4.

The starting point and the initial velocity direction for Zt are chosen by
taking a straight line l crossing B2(x, δ) according to the measure µ(·)/µ({l | l ∩
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B2(x, δ) �= ∅}). The starting point of Zt is now taken to be one of the intersection
points of l with ∂B2(x, δ), each picked with probability 1/2, while the initial
velocity vector lies on l pointing outwards B2(x, δ). Let Z̃t = Z̃t ;B2(x,δ) be the
random walk Zt killed whenever hitting its past trajectory. A crucial observation
is that the probability element of the walk Zt containing a given polygonal path
θ ∈ Cx↔y;δ as its initial subpath is exactly

1

2µ({l | l ∩ B2(x, δ) �= ∅}) exp(−4 length(θ ))
k∏

i=1

dµ(l[ek]), (5.39)

where e1, . . . , ek are the segments of θ while l[ei ] stands for the straight line
determined by ei . Indeed, the prefactor [2µ({l | l ∩ B2(x, δ) �= ∅})]−1 comes from
the choice of the initial segment of Zt [the line on which it lies and one out
of two equiprobable directions, whence the extra 2−1] while for the remaining
segments we use the fact that, for any given straight line l0, we have µ({l | l ∩ l0 ∈
d�, � (l, l0) ∈ dφ}) = | sin φ|d�dφ with d� standing for the length element on
l0 and with � (l0, l) denoting the angle between l and l0, see Proposition 3.1
in Ref. 2 as well as the argument justifying the dynamic representation of the
Arak in Sec. 4 ibidem and the proof of Lemma 1 in Schreiber. (15) Note that the
direction update intensity for Zt was set to 4 to cancel out with the normalising
constant

∫ 2π

0 | sin φ|dφ = 4 in the density | sin φ|/4 for the new angle choice.
Clearly, the formula (5.39) is also valid for Zt replaced by Z̃t since the paths in
Cx↔y;δ are by definition self-avoiding. Thus, taking into account that, by standard
integral geometry, µ({l | l ∩ B2(x, δ) �= ∅}) = 2πδ and recalling (1.11) and (1.12)
we rewrite (5.39) as 1

4πδ
[�x↔y;δ][2](dθ ). Consequently, recalling the definition of

Cx↔y;δ and using (5.39) we come to

Lemma 5.1. For each C ⊆ Cx↔y;δ the following representation formula is valid
for the value of [�x↔y;δ][2](C)

[�x↔y;δ][2](C) = 4πδEcard{t̃ > 0 | Z̃ t̃ ∈ (Z̃t )t≥0 ∩in ∂B2(y, δ), Z̃[0,t̃] ∈ C},
where (Z̃t )t≥0 ∩in ∂B2(y, δ) stands for the collection of entry points of Z̃t into
B2(y, δ), with exit points not taken into account.

A simple yet useful conclusion of Lemma 5.1 is that, denoting by Z̃ [β]
t =

Z̃ [β]
t ;B2(x,δ) the random walk Zt killed at rate β and, in addition, killed whenever

hitting its past trajectory, we have for β ≥ 2

[�x↔y;δ][β](C) = 4πδEcard{t̃ > 0 | Z̃ [β−2]
t̃ ∈ (Z̃ [β−2]

t )t≥0 ∩in ∂B2(y, δ),

× Z̃ [β−2]
[0,t̃] ∈ C}. (5.40)
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Consequently, writing now Ẑ [β]
t = Ẑ [β]

t ;B2(x,δ) for the random walk Zt killed at rate

β and, in addition, killed whenever hitting its past trajectory or a contour of A[β],

in view of Lemma 5.1 and (5.40) the definition (1.13) yields

T [β]
(δ) [x ↔ y] = 4πδEcard

[
(Ẑ [β−2]

t )t≥0 ∩in ∂B2(y, δ)
]
. (5.41)

A similar representation can be provided for T [β]
(δ;D), by additionally killing the

random walk whenever it hits ∂ D. A corresponding representation for T̂ [β]
(δ) and

T̂ [β]
(δ;D) can also be given, yet we omit it because it is unessential for our further

purposes and involves certain technicalities due the fixed last segment.

5.3. Finite Volume Approximations

The following lemma shows that T [β]
(δ) [x ↔ y] is well approximated by

T [β]
(δ;D)[x ↔ y] for sufficiently large domains D. We write �(x ↔ y; δ) for the

square of sidelength 2δ + dist(x, y) with one pair of its sides parallel and equidis-
tant to [x, y] and with the remaining two sides at the distance δ from x and y
respectively, perpendicular to [x, y].

Lemma 5.2. For each sufficiently large β > 2 there exists a constant C =
C(β, δ) > 0 such that

C−1T [β]
(δ) [x ↔ y] ≤ T [β]

(δ;�(x↔y;δ))[x ↔ y] ≤ T [β]
(δ) [x ↔ y]

whenever dist(x, y) is large enough.

Proof: The relation T [β]
(δ;�(x↔y;δ))[x ↔ y] ≤ T [β]

(δ) [x ↔ y] is obvious and only the

remaining inequality T [β]
(δ) [x ↔ y] ≤ CT [β]

(δ;�(x↔y;δ))[x ↔ y] requires verification.
In view of the random walk representation (5.41) it will follow as soon as we show
that

P [β]
(δ;�(x↔y;δ))[x ↔ y] ≥ C−1 P [β]

(δ) [x ↔ y] (5.42)

for some C > 0, where

P [β]
(δ) [x ↔ y] := P

((
Ẑ [β−2]

t

)
t≥0

reaches ∂B2(y, δ)
)

and

P [β]
(δ;D)[x ↔ y] := P

((
Ẑ [β−2]

t

)
t≥0

reaches ∂B2(y, δ) before hitting ∂ D
)

.

Indeed, it is easily argued that upon hitting ∂B2(y, δ) once, the random walk
Ẑ [β−2]

t is unlikely to hit it too many more times and, consequently, the expectation
on the right-hand side of (5.41) is bounded above and below by some constant
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multiplicities of the probability on the right-hand side of (5.42), the same obser-
vation holds for the corresponding representation of the finite-volume quantity
T [β]

(δ;�(x↔y;δ))[x ↔ y]. We omit the tedious technical details of this conceptually
simple argument.

The proof of (5.42) splits into two parts. First, denoting by R1(x ↔ y; δ) the
infinite strip between the lines determined by the sides of �(x ↔ y; δ) perpendic-
ular to [x, y], we show that

P [β]
(δ) [x ↔ y] ≤ C P [β]

(δ;R1(x↔y;δ))[x ↔ y] (5.43)

for some C > 0. Below it will be convenient to use the name x-line (resp. y-line)
for the boundary line (side) of R1(x ↔ y; δ) at the distance δ from x (resp. y),
perpendicular to [x, y]. Next, writing R2(x ↔ y; δ) for the infinite strip contained
between the lines determined by the sides of �(x ↔ y; δ) parallel to [x, y], we
show that

P [β]
(δ) [x ↔ y] ≤ P [β]

(δ;R2(x↔y;δ))[x ↔ y](1 + o(1)). (5.44)

as dist(x, y) → ∞. Write

P [β]
(δ;�(x↔y;δ))[x ↔ y] ≥ P [β]

(δ) [x ↔ y] −
(

P [β]
(δ) [x ↔ y]P [β]

(δ;R1(x↔y;δ))[x ↔ y]
)

−
(

P [β]
(δ) [x ↔ y] − P [β]

(δ;R2(x↔y;δ))[x ↔ y]
)

= P [β]
(δ;R1(x↔y;δ))[x ↔ y]

+ P [β]
(δ;R2(x↔y;δ))[x ↔ y] − P [β]

(δ) [x ↔ y].

Combining this with (5.43) and (5.44) yields (5.42) as required for completing the
proof of the lemma.

To proceed with the verification of (5.43), on the event that the random walk
Ẑ [β−2]

t reaches ∂B2(y, δ) before being killed we decompose its trajectory into three
subpaths

• ζx↔y;δ := (
Ẑ [β−2]

t

)
[τx ,τy ]

, where τy is the first time Ẑ [β−2]
t hits the y-line

while τx is the last time Ẑ [β−2]
t hits the x-line before τy .

• ζx := (
Ẑ [β−2]

t

)
[0,τx ]

,

• ζy := (
Ẑ [β−2]

t

)
t≥τy

,

with the additional convention that τx := 0 if Ẑ [β−2]
t does not reach the x-line and

τy := +∞ if Ẑ [β−2]
t does not reach the y-line (we set respectively ζx := ∅ and

ζy := ∅ in these cases). On the x-line we construct a double sequence (xi )i∈Z of
points with xi+k lying at the distance |k|δ from xi (say above for k > 0, below for
k < 0) and with x0 coinciding with the intersection point of the x-line and the line
extending [x, y]. The sequence (yi )i∈Z on the y-line is constructed in the same
way and ordered in the same direction as (xi ). Let x̂ denote the point in (xi )i∈Z
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which lies the closest to Ẑ [β]
τx

if τx > 0 and x̂ := x otherwise. Likewise, let ŷ be

the point in (yi )i∈Z lying the closest to Ẑ [β−2]
τy

if τy < +∞ and ŷ := y otherwise.
With this notation it is easily seen that

P [β]
(δ) [x ↔ y] ≤

∑
x̂∈{x}∪{xi , i∈Z}

∑
ŷ∈{y}∪{y j , j∈Z}

× P [β]
(δ;R1(x↔y;δ))[x̂ ↔ ŷ]Q[β]

(δ) [x ↔ x̂ ; ŷ ↔ y], (5.45)

where Q[β]
(δ) [x ↔ x̂ ; ŷ ↔ y] stands for the supremum over the possible realisations

of ζx↔y connecting B2(x̂, δ) with B2(ŷ, δ) of the conditional probability, given

ζx↔y, that the random walk Ẑ [β−2]
t connects B2(x, δ) to B2(x̂, δ) and B2(ŷ, δ) to

B2(y, δ). Since Ẑ [β−2]
t is killed with the constant rate β − 2 > 0, for arbitrarily

small ε we can find λ = λ(ε) such that, uniformly over x, y with dist(x, y) large
enough, ∑

xi , dist(xi ,x)>λ

∑
y j

Q[β]
(δ) [x ↔ xi ; y j ↔ y]

+
∑

xi

∑
y j , dist(y j ,y)>λ

Q[β]
(δ) [x ↔ xi ; y j ↔ y] ≤ ε. (5.46)

Putting (5.45) and (5.46) together yields

P [β]
(δ) [x ↔ y] ≤

∑
xi , dist(xi ,x)≤λ;

∑
y j , dist(y j ,y)≤λ

P [β]
(δ;R1(x↔y;δ))[xi ↔ y j ]

+ ε sup
xi ,y j

P [β]
(δ;R1(x↔y;δ))[xi ↔ y j ]. (5.47)

For dist(x, y) large enough the double sum in (5.47) can be bounded above
by some constant C[λ] times P [β]

(δ;R1(x↔y;δ))[x ↔ y] because each path of Ẑ [β−2]
t

connecting ∂B2(xi , δ) to ∂B2(y j , δ) in R1(x ↔ y; δ) with dist(x, xi ) ≤ λ and
dist(y, y j ) ≤ λ can be modified into a path connecting ∂B2(x, δ) to ∂B2(y, δ)
in R1(x ↔ y; δ) by an appropriate surgery between x and xi and between y and
y j at a probability cost depending only on λ. It seems natural to expect that

the supremum supxi ,y j
P [β]

(δ;R1(x↔y;δ))[xi ↔ y j ] admits an upper bound very close

to P [β]
(δ) [x ↔ y], because dist(xi , y j ) > dist(x, y) for all xi , y j . While we are not

able to establish such a bound, we easily show that there exists a positive constant
C ′ with

sup
xi ,y j

P [β]
(δ;R1(x↔y;δ))[xi ↔ y j ] ≤ C ′ P [β]

(δ) [x ↔ y] (5.48)

uniformly in x, y with dist(x, y) large enough. Indeed, this is done much along
the same lines as in the considerations leading to (5.45) and (5.47), so we only
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sketch the argument omitting technical details. We split each path of the random
walk Ẑ [β−2]

t ;B2(xi ,δ) connecting ∂B2(xi , δ) to ∂B2(y j , δ) into two subpaths: the initial

subpath ζ1 connecting ∂B2(xi , δ) to some ∂B2(z, δ), z ∈ δZ
2 with |dist(xi , z) −

dist(x, y)| ≤ δ (in fact, z can be chosen as the δZ
2-lattice point closest to the

point where the random walk Ẑ [β−2]
t ;B2(xi ,δ) first gets at the distance dist(x, y) away

from xi ) and the remaining subpath ζ2. Integrating over ζ1 for fixed z yields a
value bounded above by a constant multiplicity of P [β]

(δ) [x ↔ y] with this prefactor
(arbitrarily close to 1 for δ small enough) due to the fact that dist(xi , z) differs
slightly from dist(x, y). Integrating over ζ2 conditioned on ζ1 and summing over
z yields only a constant prefactor – the sum of integrals converges due to the
constant killing rate β − 2 > 0 along ζ2. This proves (5.48). Combining now
(5.47) with (5.48) and with the discussion directly following (5.47) we obtain

P [β]
(δ) [x ↔ y] ≤ C[λ]P [β]

(δ;R1(x↔y;δ))[x ↔ y] + εC ′ P [β][x ↔ y]. (5.49)

Choosing ε small enough so that εC ′ < 1 (recall that C ′ does not depend on
λ) completes the proof of (5.43). To establish (5.44) we denote by �vxy the unit
vector pointing from x to y, i.e. �vxy := (y − x)/dist(x, y), and for small η > 0
we consider the event E(δ;η)[x ↔ y] that

• The random walk
(
Ẑ [β−2]

t

)
t≥0

reaches ∂B2(y, δ),

• The scalar product of �vxy and the current velocity vector of Ẑ [β−2]
t is in

[1 − η, 1] for all time moments t ≥ 0 before ∂B2(y, δ) is reached.

Observe that on the event E [β]
(δ;η)[x ↔ y] the total length of the path of Ẑ [β−2]

t

connecting ∂B2(x, δ) to ∂B2(y, δ) cannot exceed [dist(x, y) + 2δ]/[1 − η]. Since
A[β] is stochastically dominated by the Poisson contour process P�[β] , as follows
by the graphical construction of Sec. 1.2, we conclude that there exists κ > 0 such
that for all β large enough

P

(
E [β]

(δ;η)[x ↔ y]
)

≥ exp

(
−
[
β − 2

1 − η
+ κ

]
(dist(x, y) + 2δ)

)
. (5.50)

Indeed, to see it we:

• Split the strip R1(x ↔ y; δ) with equidistant straight lines perpendicular
to [x, y] into �(dist(x, y)) equal-sized strips.

• Construct a path of the random walk Z̃ connecting ∂B2(x, δ) to ∂B2(y, δ)
and such that the scalar product of �vxy and the current velocity vector of
Z̃t falls into [1 − η, 1] for all time moments before ∂B2(y, δ) is reached.
This is done by constructing and patching together subpaths of Z̃ crossing
individual strips, at a constant probability cost per strip.
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• Use the stochastic domination of A[β] by P�[β] to conclude that the prob-
ability that the so constructed path of Z̃t avoids A[β] is bounded below by
exp(−�(dist(x, y))).

• Check for survival of the so constructed path under β − 2-killing, which
yields a probability prefactor bounded below by exp(− β−2

1−η
[dist(x, y) +

2δ]).

By the definition of E [β]
(δ;η), for dist(x, y) large enough this procedure allows us

to bound below the probability of this event by exp(−( β−2
1−η

+ κ)[dist(x, y) + 2δ])
for some κ > 0, as required. SinceP�[β] stochastically dominatesP�[β′ ] for β ′ > β,

this technique works uniformly in β large enough. We omit tedious technical details
of this standard argument. To proceed, define the event R[β]

(δ) [x ↔ y] that

• The random walk (Ẑ [β−2]
t )t≥0 reaches ∂B2(y, δ),

• The random walk (Ẑ [β−2]
t )t≥0 hits ∂ R2(x ↔ y; δ) before reaching

∂B2(y, δ),

and observe that on R[β]
(δ) [x ↔ y] the length of the path connecting ∂B2(x, δ) to

∂B2(y, δ) has to exceed
√

2dist(x, y) − 2δ and, hence,

P

(
R[β]

(δ) [x ↔ y]
)

≤ exp
(
−(β − 2)[

√
5/4dist(x, y) − 2δ]

)
. (5.51)

Noting that P(E [β]
(δ;η)[x ↔ y]) ≤ P [β]

(δ;R2(x↔y;δ))[x ↔ y] for sufficiently small η

and putting (5.50) together with (5.51) we see that, for β large enough,

P [β]
(δ) [x ↔ y] − P [β]

(δ;R2(x↔y;δ))[x ↔ y] = P

(
R[β]

(δ) [x ↔ y]
)

= o
(

P [β]
(δ;R2(x↔y;δ))[x ↔ y]

)
.

This yields (5.44) and hence the required relation (5.42). The proof of Lemma 5.2
is complete. �

5.4. Existence and Finiteness of Surface Tension

In this subsection we use the preceding results of this section to show that

Lemma 5.3. The limit defining the surface tension functional τ [β] in (1.15)
exists, is finite and strictly positive.

Proof: The main work has already been done in Lemma 5.2. In view of the
relation supλ>2δ τ

[β]
λ < ∞ as easily deduced from (5.50), the required existence of

the limit in (1.15) will follow by a standard almost-subadditivity argument once
we establish the following auxiliary lemma. �
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Lemma 5.4. For D[λ1, λ2] := (log[λ1 + λ2])2 and λ1, λ2 large enough we have

(λ1 + λ2 + D[λ1, λ2])τ [β]
λ1+λ2+D[λ1,λ2] ≤ λ1τ

[β]
λ1

+ λ2τ
[β]
λ2

+ O(D[λ1, λ2])).

Proof of Lemma 5.4. For fixed δ > 0 consider disjoint squares �1 := �(0 ↔
λ1ex ; δ) and �2 := �((λ1 + D[λ1, λ2])ex ↔ (λ1 + λ2 + D[λ1, λ2])ex ; δ), sepa-
rated by a moat of width D[λ1, λ2], and observe that, since D[λ1, λ2] � log[λ1 +
λ2], by the decoupling Lemma 4.1 applied to U1 := �1 ∩ θ, U2 := �2 ∩ θ, with
θ standing for the integrand polygonal path in the definition (1.13) of T [β]

(·) [· ↔ ·],
it follows that

T [β]
(δ) [0 ↔ (λ1 + λ2 + D[λ1, λ2])ex ]

≥ e−O(D[λ1,λ2])T [β]
(δ;�1)[0 ↔ λ1ex ]T [β]

(δ;�2)[(λ1 + D[λ1, λ2])

×ex ↔ (λ1 + λ2 + D[λ1, λ2])ex ], (5.52)

with the prefactor e−O(D[λ1,λ2]) due to patching together pairs of paths θ1 in
C0↔λ1ex ;δ and θ2 in C(λ1+D[λ1,λ2])ex ↔(λ1+λ2+D[λ1,λ2])ex ;δ, both disjoint with A[β],

into paths θ falling into C0↔(λ1+λ2+D[λ1,λ2])ex ;δ disjoint with A[β], by construct-
ing a path connecting θ1 and θ2 across the moat of width D[λ1, λ2] separat-
ing �1 and �2, according to a procedure completely analogous to that used
in the argument leading to (5.50). Note that the fact that the patching pro-
cedure involves here conditioning on A[β] being disjoint with θ1 and θ2 does
not affect this argument because the conditional graphical construction of the
process A[β]

R
2:θ1∪θ2

guarantees that it is stochastically bounded by P�[β]:θ1∪θ2
and

hence by P�[β] as used in the proof of (5.50). To proceed, apply Lemma 5.2
to conclude that the quantities T [β]

(δ) [0 ↔ λ1ex ] and T [β]
(δ) [(λ1 + D[λ1, λ2])ex ↔

(λ1 + λ2 + D[λ1, λ2])ex ] are bounded above by constant multiplicities of
their respective finite volume counterparts T [β]

(δ;�1)[0 ↔ λ1ex ] and T [β]
(δ;�2)[(λ1 +

D[λ1, λ2])ex ↔ (λ1 + λ2 + D[λ1, λ2])ex ]. Combining this conclusion with (5.52)
shows that T [β]

(δ) [0 ↔ (λ1 + λ2 + D[λ1, λ2])ex ] ≥ exp(−O(D[λ1, λ2]))T [β]
(δ) [0 ↔

λ1ex ]T [β]
(δ) [(λ1 + D[λ1, λ2])ex ↔ (λ1 + λ2 + D[λ1, λ2])ex ] for some C > 0,

which completes the proof in view of the definition (1.14) of τ
[β]
λi

, i = 1, 2. �

Completing the Proof of Lemma 5.3. With the existence of the limit in (1.15)
established we now easily conclude its strict positivity from the positivity of killing
rate in the random walk representation (5.41) while the finiteness of τ [β] follows
by the probability lower bound (5.50). �
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6. SKELETON ESTIMATES

The purpose of this section is to provide coarse-graining estimates based on
skeleton calculus. For α, δ > 0, always assumed to satisfy α � δ and to tend to
∞ as L → ∞, by an (α, δ)-skeleton in B2(L) we shall understand a collection
(I1, E1, I2, E2, . . . , Im, Em) of pairwise different points (skeleton vertices) in
B2(L) ∩ Z

2, with I1, I2, . . . referred to as the initial points, E1, E2, . . . as the
corresponding endpoints and [I1, E1], [I2, E2], . . . as the skeleton segments, where
the following is satisfied for all i = 1, . . . , m

(S1) α − √
2 ≤ dist(Ii , Ei ) ≤ α + √

2.

We say that a collection γ of α-large polygonal contours is compatible with
an (α, δ)-skeleton � = (I1, E1, . . . , Im, Em), write γ ∼ �, if the following holds
for all i = 1, . . . , m

(S2) There exists a contour θi ∈ γ and points I γ

i , Eγ

i ∈ θi such that
dist(Ii , I γ

i ) ≤ 1√
2
, dist(Ei , Eγ

i ) ≤ 1√
2

and dist(Ii , x) ≤ α + 1√
2

for all x ∈
θi [I γ

i , Eγ

i ] with θi [I γ

i , Eγ

i ] standing for the polygonal path from I γ

i to Eγ

i
along θi ,

(S3) Either we have dist(Ii , {I1, . . . , Ii−1}) ≤ α + δ + √
2 or i is the smallest

index with I γ

i ∈ θi for some θi ∈ γ,

(S4) For each x ∈ γ we have dist(x, {I1, . . . , Im}) ≤ 2α + δ + √
2,

(S5) The polygonal paths θi [I γ

i , Eγ

i ] are in a distance at least δ away from each
other.

Roughly speaking, the motivation underlying this definition is the follow-
ing. For two distant points x, y with dist(x, y) = �(α) connected by a polygonal
subpath of a contour we want to find a collection of approximately equal-sized
segments [Ii , Ei ] of length α(1 + o(1)), lying on this path and such that their
overall length is at least dist(x, y)(1 + o(1)). Being only concerned with this to-
tal length condition, as ensured by (S3) stating that the distance between initial
points is close to the single segment length, we do not require that these segments
form themselves a connected polygonal path or that their ordering agree with the
orientation of the path. On the other hand, we do impose an explicit lower bound
(S5) for distance between polygonal subpaths crossing different segments, thus
ensuring the applicability of the decoupling Lemma 4.1 in our further argument. It
should be emphasised that this approach, considerably simplifying our argument
in the sequel, can only work in an isometry invariant setting, as ours, where it is
justified to look only at the total length of phase interfaces while ignoring their
local directions, ordering etc.

We say that a collection γ of α-large contours dominates an (α, δ)-skeleton
�, write γ � �, iff γ contains a sub-family of contours γ ′ with γ ′ ∼ �. Further,
by the length of a skeleton � = (I1, E1, . . . , Im, Em), denoted length(�), we
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understand the total length of skeleton segments
∑m

i=1 dist(Ii , Ei ). We write also
N (�) for the total number of initial and endpoints in �. We say that a collection
γ of α-large polygonal contours is well covered by an (α, δ)-skeleton �, write
γ ∝ �, if the following holds

• γ ∼ �,
• � maximises length(�) among skeletons compatible with γ.

We will often use the ∼,�,∝ notation for contour collection containing also
α-small contours, in which case we shall always mean that the appropriate relation
holds for the corresponding sub-ensemble of α-small contours.

For an (α, δ)-skeleton � we consider the corresponding black phase area,
denoted in the sequel by Area(�), and given by

Area(�) := sup
γ∝�

Area
(
black

[⋃
θ∈γ

θ
])

.

In other words, Area(�) is the supremum value of possible black phase area which
can be enclosed by a collection γ of α-large contours well covered by �. We note
that for some � there may be no such γ in which case we put by convention
Area(�) := 0.

Lemma 6.1. For a collection γ of α-large contours there exists a compatible
(α, δ)-skeleton �.

Proof: Choose an initial point I1 ∈ Z
2 ∩ B2(L) at a distance less that 1/

√
2 from

some θ1 ∈ γ, set I γ

1 to be the point of θ1 minimising the distance to I1 and let Eγ

1
be the first point (say in clockwise order) on θ1 at the distance α from I γ

1 (note
that the distance considered here and below is the usual Euclidean distance and
not the distance along the contour θ1 !). Set E1 to be the point of B2(L) ∩ Z

d

which lies the closest to Eγ

1 . The conditions (S1),(S2) for i = 1 is now easily
verified. Further, if existing, choose I γ

2 to be the point minimising the distance to
θ1[I γ

1 , Eγ

1 ] (with ties broken in an arbitrary way) among the points I γ

2 in γ with
the property that there exists Eγ

2 ∈ θ2 with dist(I γ

2 , Eγ

2 ) = α, dist(I γ

2 , x) ≤ α for
all x ∈ θ2[I γ

2 , Eγ

2 ] and dist(θ1[I γ

1 , Eγ

1 ], θ2[I γ

2 , Eγ

2 ]) ≥ δ, where θ2 is the contour
of γ containing I γ

2 . Note that if θ1 = θ2 then dist(I γ

2 , θ1[I γ

1 , Eγ

1 ]) = δ and hence
dist(I γ

1 , I γ

2 ) ≤ α + δ.

In case such I γ

2 and Eγ

2 exist, we define I2 and E2 as the best approxi-
mations in Z

2 ∩ B2(L) of I γ

2 and Eγ

2 respectively, getting the required relations
(S1),(S2),(S3),(S5) for i = 2. On the other hand, if such a pair (I γ

2 , Eγ

2 ) fails to
exist, we conclude that no point of γ lies further than α + δ away from θ1[I γ

1 , Eγ

1 ],
for otherwise we could find I γ

2 and Eγ

2 with desired properties. In this case by
(S2) we have dist(x, I γ

1 ) ≤ 2α + δ for all x in γ which yields (S4), and (S3),(S5)
are obvious, whence (I1, E1) is already an (α, δ)-skeleton compatible with γ.
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We proceed inductively with this construction, adding new pairs
(Ii+1, Ei+1) obtained as the best lattice approximations of (I γ

i+1, Eγ

i+1)
with I γ

i+1 arising as the point minimising the distance to
⋃

j≤i θ j [I γ

j , Eγ

j ]
among the points I γ

i+1 ∈ θi+1 ∈ γ for which there exists Eγ

i+1 ∈ θi+1 with
dist(I γ

i+1, Eγ

i+1) = α, dist(I γ

i+1, x) ≤ α for all x ∈ θi+1[I γ

i+1, Eγ

i+1], and such that
dist(θi+1[I γ

i+1, Eγ

i+1],
⋃

j≤i θ j [I γ

j , Eγ

j ]) ≥ δ. We note that if θi+1 = θ j for some
j ≤ i then dist(I γ

i+1,
⋃

j≤i θ j [I γ

j , Eγ

j ]) = δ and hence dist(I γ

i+1, {I γ

1 , . . . , I γ

i }) ≤
α + δ. The construction terminates when no further pair can be found, and it is eas-
ily verified as in the argument above that the resulting collection (I1, E1, I2, E2, ...)
is an (α, δ)-skeleton compatible with γ. The proof is complete. �

Recalling that, by the definition, skeletons have their vertices pairwise differ-
ent and belonging to B2(L) ∩ Z

2 and hence their number is finite, we obtain the
following corollary as an immediate conclusion of Lemma 6.1.

Corollary 6.2. Each finite collection γ of α-large contours can be well covered
by some (α, δ)-skeleton �.

A particular feature of the notion of skeleton as introduced in this section
is that if two polygonal subpaths of some contours go very close to each other,
it may happen that only one of these subpaths will contribute to the total length
of a well-covering skeleton because of the requirement that subpaths going along
the segments of the skeleton keep distance at least δ from each other as imposed
in (S5) above. However, this does not lead to problems in our further argument,
since we are mainly concerned with minimising the skeleton length given the
enclosed area, where collections consisting of multiple contours are outperformed
by singleton ones. This is made formal in the isoperimetric lemma below.

Lemma 6.3. Assume that A � α6. Then for each (α, δ)-skeleton � in B2(L)
with Area(�) = A, A ∈ [0, π L2], we have

length(�) ≥ 2
√

π A[1 − O(δ/α)] − O(α).

Proof: Below, we restrict our attention to skeletons � with length(�) ≤ 2π L ,

since otherwise our assertion is obvious.
Pick some collection of α-large contours γ ∗ ∝ � with Area(black

[
⋃

θ∗∈γ ∗ θ∗]) = Area(�) − o(1) = A − o(1), and observe that, by the definition
of the relation ∝, to prove the lemma it is enough to construct �∗ with γ ∗ ∼ �∗

and such that, for A � α2,

length(�∗) ≥ Aψ(A) (6.53)
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for a non-increasing function A �→ ψ(A) = ψ(A; α, δ) with A �→ Aψ(A) non-
decreasing, satisfying

ψ(A) = 2
√

π/A[1 − O(δ/α)] − O(α/A) (6.54)

(note that the statement of the lemma trivialises for A = O(α2)). Without loss of
generality we can and do assume that γ ∗ contains no nested contours, for otherwise
we could simply remove the internal contours increasing the area enclosed by γ ∗,
proceed with the construction below for the so reduced γ ∗ obtaining �∗ of required
length, and then construct some additional skeleton segments for the internal con-
tours and add them to �∗ thus increasing its length even further. We also assume
that γ ∗ contains only contours for which dist(θ∗,

⋃
δ∗∈γ ∗\{θ∗} δ∗) > 64α. This does

not result in loss of generality because finding a sub-collection γ̂ ∗ of contours sat-
isfying this condition and such that all other contours of γ ∗ are contained in 64α-
neighbourhood of

⋃
γ̂ ∗, and then constructing �̂∗ for γ̂ ∗, we see that the total area

enclosed by the contours in γ ∗ \ γ̂ ∗ is of order O(α length(�̂∗)), whence by (6.53)
for �̂∗ we get length(�̂∗) ≥ [A − O(α length(�̂∗))]ψ(A − O(α length(�̂∗)) and
consequently, by (6.54), length(�∗) ≥ length(�̂∗) ≥ Aψ(A) − O(α) provided
α length(�̂∗) = o(A). The remaining case length(�̂∗) = �(A/α) is easily han-
dled directly, by considering subcases A = O(α2) and A � α2.

The proof of existence of �∗ satisfying (6.53) goes by induction with respect
to the number n∗ of contours in γ ∗ = {θ∗

1 , . . . , θ∗
n∗ }, assumed to be ordered by de-

creasing enclosed area. For n∗ = 1 the assertion follows immediately by standard
isoperimetric argument: note that the correcting term AO(α/A) = O(α) coming
to the RHS of (6.53) when substituting (6.54) is due to the admissible distance
�(α) between a skeleton and a compatible polygonal path [see (S4)], while the
prefactor 1 − O(δ/α) there comes from the fact that, in the single contour case,
the distance between the initial point of a given skeleton segment and the set of
preceding initial points may exceed the length of the segment by at most δ + 2

√
2

[see (S1),(S3)], which is fraction O(δ/α) of the segment length.
To proceed, take n∗ > 1. We split our argument into three possible cases.

Case 1: Say that a point x ∈ θ∗
n∗ is α-seen from a contour θ∗

i ∈ γ ∗ iff dist(x, θ∗
i ) ≤

4α. Assume that the total length of the set seen(θ∗
n∗ , θ∗

i ; α) of all such
points exceeds 16α for some i < n∗ and recall that, as assumed above,
there exists x ∈ θ∗

n∗ with dist(x,
⋃

j<n∗ θ∗
j ) > 64α. Patching θ∗

n∗ and θ∗
i

together with additional polygonal paths at two extreme points x1, x2 of
seen(θ∗

n∗ , θ∗
i ; α) and removing the internal parts of both contours between

x1 and x2, we replace θ∗
n∗ and θ∗

i by a single contour θ∗
+, which can be

made disjoint with all remaining contours θ∗
j , j �= i, j �= n∗. Denote

by γ ∗
+ the contour collection resulting from γ ∗ by replacing θ∗

n∗ and
θ∗

i by θ∗
+ and possibly removing some further contours which would

become nested due to this replacement. It is easily seen that, by our
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assumptions above, any skeleton �∗
+ ∼ γ ∗

+ can be modified into �∗ ∼
γ ∗ with length(�∗) ≥ length(�∗

+). Thus, the assertion (6.53) for γ ∗

will follow if we are able to find such �∗
+ with length(�∗

+) ≥ Aψ(A).
However, this is ensured by the inductive hypothesis in view of the
relation Area(black[

⋃
θ∗∈γ ∗+

θ∗]) ≥ Area(black[
⋃

θ∗∈γ ∗ θ∗]).
Case 2: Next, suppose that length(seen(θ∗

n∗ , θ∗
i ; α)) ≤ 16α for all i < n∗ and that

An∗ � α2, where An∗ stands for the area enclosed by θ∗
n∗ . Recall in addi-

tion that there exists x ∈ θ∗
n∗ with dist(x,

⋃
j<n∗ θ∗

j ) > 64α. We construct
an (α, δ)-skeleton �∗ as follows. Put γ ∗

− := γ ∗ \ {θ∗
n∗ } and observe that

the area enclosed by γ ∗
− is A − An∗ − o(1), which is due to the fact that

there is no contour nesting in γ ∗ as assumed above. We let �∗
− be an

(α, δ)-skeleton such that

length(�∗
−) ≥ [A − An∗ ]ψ(A − An∗ ) ≥ [A − An∗ ]ψ(A), (6.55)

with its existence guaranteed by the inductive hypothesis [note that A −
An∗ � α2 since the contours are ordered by decreasing enclosed area].
The skeleton �∗

− can be extended to a skeleton �∗ compatible with γ ∗

by the procedure described in the proof of Lemma 6.1. Denoting by
S∗ := �∗\�∗

− the collection of newly added segments we see by our
assumptions for Case 2 that S∗ can be in its turn extended to an (α, δ)-
skeleton Ŝ∗ compatible with {θ∗

n∗ } by adding at most O(n∗) new segments
covering seen(θ∗

n∗ , θ∗
i ; α). Thus, using isoperimetric argument, as applied

for the case n∗ = 1 above, we are led to

length(S∗) ≥ An∗ψ(An∗ ) − O(n∗). (6.56)

Recall now that the contours θ∗
1 , θ∗

2 , . . . are ordered by decreasing en-
closed area, whence

An∗ ≤ A/n∗. (6.57)

Using (6.57) to rewrite (6.56) as length(S∗) ≥ An∗ [ψ(An∗) − O(n∗/
An∗ )] ≥ An∗ [ψ(An∗) −O(A/A2

n∗ )] and then applying (6.54), noting that
An∗ ≤ A/2 by (6.57) and resorting to standard calculus in order to
check that, for α large enough, we have ψ(An∗ ) − O(A/A2

n∗ ) ≥ ψ(A)
for An∗ � A2/3, we conclude from (6.56) that length(S∗) ≥ An∗ψ(A)
for An∗ � A2/3. On the other hand, the trivial bound length(S∗) ≥ α

is easily seen to yield length(S∗) ≥ An∗ψ(A) whenever An∗ � α
√

A.

Since we assumed that A � α6 in the statement of the lemma, we get
α
√

A � A2/3 which leads to

length(S∗) ≥ An∗ψ(A) (6.58)
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for all An∗ within range of (6.57). Combining (6.58) with (6.55) and
recalling that length(�∗) = length(�∗

−) + length(S∗) yields the required
relation (6.53) for Case 2.

Case 3: Assume now that An∗ = O(α2). Then the required relation (6.53) can
be obtained along the same lines as in Case 2 by recalling that
dist(θ∗

n∗ ,
⋃

j<n∗ θ∗
j ) > 64α and noting that putting such θ∗

n∗ into γ ∗ re-
sults in large added length to added area ratio, exceeding ψ(A). The only
reason for discussing this case separately is the technical fact that ψ(An∗ )
is formally not defined for An∗ ≤ Cα2 unless C is large enough.

The proof is now complete by induction. �

With the concept of an (α, δ)-skeleton discussed above we are now in a
position to proceed to the main result of this section.

Lemma 6.4. With α → ∞, δ → ∞ and α � δ � log L , we eventually have for
each (α, δ)-skeleton � in B2(L)

P
(
A[β] � �

) ≤ exp
(−τ [β]

α length(�)
)
.

Proof: For a contour collection γ � �, γ = {θ1, . . . , θk} we consider the parti-
tion �[γ ] = {S[θ1], . . . ,S[θk]} of � into disjoint sub-skeletons S[θi ] composed
of segments [I, E] with the corresponding points I γ , Eγ , as given by (S2), lying
on θi . Note that someS[θi ] may be empty. Moreover, for a non-empty sub-skeleton
S ⊆ � we write [S] to denote the family of all contours θ such that dist(I, θ ) ≤ 1/√

2 and dist(E, θ ) ≤ 1/
√

2 for all segments [I, E] ∈ S. In particular, we always
have θi ∈ [S[θi ]] provided S[θi ] �= ∅. In view of (1.6) or, equivalently, by the
graphical construction of Sec. 1.2, we see that

P
(
A[β] � �

) ≤
∑

{S1,...,Sk }

∫
[S1]×...×[Sk ]

P


 k⋃

j=1

θ j ∩ A[β] = ∅

 1{{θ1,...,θk }∼�}

×
k∏

i=1

d�[β](θi ), (6.59)

where the sum ranges over all possible partitions {S1, . . . ,Sk} of � and with
the inequality rather than equality above due to the fact that we do not restrict
the domain of integration to non-intersecting contours θi and that more than one
contour of A[β] might occur in [Si ], moreover it is not guaranteed that Si = S[θi ].
We fix a partition � = S1 ∪ . . . ∪ Sk and, to distinguish between vertices coming
from different sub-skeletons S j , j = 1, . . . , k, we subscript skeleton vertices
with the corresponding sub-skeleton names, writing Ii ;S j and Ei ;S j . We also put
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γ := {θ1, . . . , θk}. Denote by Pi ; j the polygonal subpath θ j [ Î
θ j

i , Ê
θ j

i ] of the contour

θ j ∈ [S j ] in the above integral, with Î
θ j

i and Ê
θ j

i standing for the points of θ j

closest to Ii ;S j and Ei ;S j respectively. Note that the points Î
θ j

i and Ê
θ j

i do not have
to coincide with I γ

i ;S j
and Eγ

i ;S j
as specified by the correspondence (S2) implied by

γ ∼ �; yet we clearly have dist(I γ

i ;S j
, Î

θ j

i ) ≤ √
2 and dist(Eγ

i ;S j
, Ê

θ j

i ) ≤ √
2. The

reason for introducing Î
θ j

i and Ê
θ j

i rather than simply using I γ

i ;S j
and Eγ

i ;S j
in their

stead is to ensure measurable dependence of Pi, j on θ j .

Observe that by condition (S5) the distance between different Pi ; j does not
fall below δ. Given the collections (θ ) := (θ j ) and (P) := (Pi ; j )i, j we consider the
events

Ii ; j [θ j ] := {A[β] ∩ Pi ; j = ∅}.
Taking into account that Area(Pi, j ⊕ B2(1)) = O(length(Pi, j )) = O(α) and using
the decoupling Lemma 4.1 yields uniformly in (θ )

P


⋂

i, j

Ii ; j [θ j ]


 =

k∏
i, j

P
(
Ii ; j [θ j ]

)
(1 + O(exp(−Cδ) length(�) log N (�))).

(6.60)
To proceed, note that, by (6.59),

P
(
A[β] � �

) ≤
∑

{S1,...,Sk }

∫
[S1]×...×[Sk ]

P


⋂

i, j

Ii ; j [θ j ]


 k∏

i=1

d�[β](θi )

and hence, in view of (6.60), applying the rough bounds N (�) = O(L2) and
length(�) = O(L3) we obtain

P
(
A[β] � �

) ≤
∑

{S1,...,Sk }

∫
[S1]×...×[Sk ]

∏
i, j

P
(
Ii ; j [θ j ]

) k∏
i=1

d�[β](θi )

× (1 + O(exp(−Cδ)L3 log L)).

For an endpoint Ei ;S j we write ς (Ei ;S j ) to denote the skeleton vertex Ii ′;S j or Ii ′;S j

directly succeeding Ei ;S j in clockwise order on θ j . Then, by the formulae (1.13)

and (5.37) for T [β]
(·) [· ↔ ·] and ϑ

[β]
(·) [· ↔ ·] respectively, in view of the definitions

of T̂ [β]
(·) [· ↔ ·] and ϑ̂

[β]
(·) [· ↔ ·] as provided in Subsec. 5.1, and by the definition

(1.4) of the free contour measure and (1.11) of the free path measure we are led to

P
(
A[β] � �

) ≤
∑

{S1,...,Sk }

∑
ς

∏
i, j

(
T̂ [β]

( 1√
2

)
[Ii ;S j ↔ Ei ;S j ] ϑ̂

[β]
( 1√

2
)
[Ei ;S j ↔ ς (Ei ;S j )]

)

× (1 + O(exp(−Cδ)L3 log L))C N (�)
1 , C1 > 0, (6.61)
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where the inner sum ranges over all possible successor assignments ς and where
the extra factor C N (�)

1 comes from integrating out the configuration of contours
θ j within 1/

√
2-neighbourhoods of Ii ;S j and Ei ;S j , i = 1, . . . , which are sub-

ject to optimisation rather than integration in definitions of T̂ [β]
(·) [· ↔ ·] and ϑ̂

[β]
(·)

[· ↔ ·]. Recall that dist(Ei ;S j , ς (Ei ;S j )) > δ − √
2 in view of (S5) and then use

the random walk representation of Lemma 5.1 and (5.40) combined with (5.38)
to conclude that ϑ̂

[β]
( 1√

2
)
[x ↔ y] = exp(−�(δ)). Thus, taking into account that both

the total number of possible partitions {S1, . . . ,Sk} and the total number of pos-
sible successor assignments ς are of order exp(O(N (�) log N (�))), in view of
(1.14) the relation (6.61) combined with (5.35) gives us

P

(
A[β]

L � �
)

≤
∏
i, j

exp
(−τ [β]

α dist(Ii ;S j , Ei ;S j ) + O(N (�) log N (�)

−�(δN (�)))) (1 + O(exp(−Cδ)L3 log L)).

Since, by definition, length(�) = ∑
i, j dist(Ii ;S j , Ei ;S j ) and, moreover,

exp(−Cδ)L3 log L = o(1) and δN (�) � N (�) log N (�) by the assumptions of
the lemma, we conclude that

P

(
A[β]

L � �
)

≤ exp
(−τ [β]

α length(�)
)

for α, δ, L large enough, as required. �

7. LOWER BOUND

Below, we provide a lower bound for the occurrence probabilities of large
contours in A[β]. This is complementary to the upper bounds obtained in the
preceding Sec. 6. For α, δ > 0 and for a piecewise smooth closed curve σ in R

2 we
consider the eventU[σ ; α] that there exists a contour θ ∈ A[β] such that ρH (σ, θ ) ≤
2α with ρH (·, ·) standing for the usual Hausdorff distance. The following lemma
gives a lower bound for the probability of such event for σ := S1(R) = ∂B2(R).

Lemma 7.1. With α → ∞, δ → ∞, R → ∞ such that log R � δ � α � R
we have

P(U[S1(R); α]) ≥ exp
(−2π Rτ [β]

α − O(δR/α)
)
.

Proof: Note that

P(U[S1(R); α]) ≥
∫

{θ∈C | ρH (θ,S1(R))≤2α}
P
(
θ ∩ A[β] = ∅)�[β](dθ )

−P(U (>1)[S1(R); α]), (7.62)
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where U (>1)[S1(R); α] is the event that there exist at least two contours
θ1, θ2, . . . in A[β] such that ρH (S1(R), θi ) ≤ 2α, i = 1, 2, . . . . Using the con-
ditional graphical construction with forbidden regions we easily see that
P(U (>1)[S1(R); α]|U[S1(R); α]) = o(1), whence (7.62) becomes

P(U[S1(R); α]) ≥
∫

{θ∈C | ρH (θ,S1(R))≤2α}
P
(
θ ∩ A[β] = ∅)�[β](dθ )(1 − o(1)).

(7.63)
To proceed, we partition the circle S1(R) into disjoint segments [Ii , Ei ], i =

1, . . . , N (R; α, δ) = �(R/α) separated by spacings of length δ and such that
dist(Ii , Ei ) = α, i = 1, . . . , N (R; α, δ). Denote by �i the square �(Ii , Ei ; 1/√

2) as defined in the lines preceding Lemma 5.2. Clearly, �i are disjoint and
dist(�i ,� j ) = �(δ) for i �= j. The integral in (7.63) can be bounded below by
restricting the domain of integration to the family C[I1, E1, . . .] of paths θ such
that, for all i = 1, . . . , N (R; α, δ), θ contains a subpath θi connecting ∂B2(Ii , 1/√

2) to ∂B2(Ei , 1/
√

2) within �i . Using the decoupling Lemma 4.1, with Ui :=
θ ∩ �i there, we can factorize the integral∫

{θ∈C[I1,E1,...] | ρH (θ,S1(0,R))≤2α}
P
(
θ ∩ A[β] = ∅)�[β](dθ )

into the product of T [β]

(1/
√

2;�i )
[Ii ↔ Ei ], i = 1, . . . , N (R; α, δ) with a prefactor

(1 + O(R exp(−C1δ) log N (R; α, δ))) exp(O(δN (R; α, δ))), C1 > 0,

where (1 + O(R exp(−C1δ) log N (R; α, δ))) is the factorization correction from
Lemma 4.1 while exp(O(δN (R; α, δ))) comes from patching the contour θ by
joining together the subpaths θi passing through adjacent δ-distant squares �i so
as to keep the resulting path within distance 2α from S1(R), see the discussion of
(5.52) and (5.50) above. Since R exp(−C1δ) log N (R; α, δ) = o(1), we obtain

P(U[S1(R); α]) ≥ exp(O(δN (R; α, δ)))
N (R;α,δ)∏

i=1

T [β]

(1/
√

2;�i )
[Ii , Ei ].

Applying Lemma 5.2 we conclude that

P(U[S1(R); α]) ≥ O
(
C N (R;α,δ)

2

)
exp(O(δN (R; α, δ)))

×
N (R;α,δ)∏

i=1

T [β]

(1/
√

2)
[Ii , Ei ], C2 > 0.

Observing that N (R; α, δ) = �(R/α) completes the proof in view of the definition
(1.14) of τ [β]

α . �
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8. PROOF OF THE MAIN THEOREM

Throughout this proof we shall put

α = α[L] :=
√

L log L and δ = δ[L] := (log L)2. (8.64)

As in the classical DKS theory, our argument below uses the decomposition
of the contour ensemble A[β] ∩ B2(L) into the collection Lα;L := Lα;L

[
A[β]

]
of

α-large contours and the remaining family of α-small contours, and it relies on
an application of the skeleton bounds of Sec. 6 and complementary estimates of
Sec. 7, combined with the use of moderate deviation results of Sec. 3.

8.1. Lower Bound for (1.17)

In order to prove (1.17) we establish first the lower bound

P
(
ML (A[β]) ≥ M[β]π L2 + aL2, N [α; L] holds

)
≥ exp

(
−
√

2πa

|M[β]| Lτ [β]
α + O(α)

)
. (8.65)

To show it, put

R := L

√
a

2π |M[β]| + Cα (8.66)

for some constant C large enough so that

P
(
ML (A[β]) ≥ M[β]π L2 + aL2 | U[S1(R); α]

)
> 1/2, (8.67)

with the event U[S1(R); α], indicating the existence of a contour θ of A[β] with
ρH (θ, S1(R)) ≤ 2α, defined as in Sec. 7. Clearly, R < L for L large enough
because a < 2π |M[β]|. To see that the required choice of C in (8.66) is indeed
possible note first that

P
(
ML (A[β]) ≤ M[β]π L2 + aL2 | U[S1(R); α]

)
≤ 1

P(U[S1(R); α])

∫
{θ∈C, ρH (θ,S1(R))≤2α}

× P

(
ML (A[β]

R
2;θ

∪ θ ) ≤ M[β]π L2 + aL2
)

�[β](dθ ).

Then use (3.20) to conclude that, for ρH (θ, S1(R)) ≤ 2α,

EML

(
A[β]

R
2;θ

∪ θ
)

= M[β]π L2 + aL2 + 4π |M[β]|C Rα + O(Lα),

which can be made larger than M[β]π L2 + aL2 by a term of order �(Lα)
under appropriate choice of C. In view of Corollary 3.3 this makes the
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integrand probability P(ML (A[β]
R

2;θ
∪ θ ) ≤ M[β]π L2 + aL2) arbitrarily close

to 0, uniformly in θ with ρH (S1(R), θ ) ≤ 2α. In particular, (8.67) is seen
to hold under such choice of C, as required. To proceed, observe that
the conditional probability P(N c[α; L]|U[S1(R); α]), being bounded above
by [P(U[S1(R); α])]−1

∫
{θ∈C, ρH (θ,S1(R))≤2α} P(N c[α; L] holds for A[β]

R
2;θ

)�[β](dθ ),
tends to 0 as L → ∞ by the results of Lemma 2.1 in Sec. 2 specialised for
A[β]

R
2;θ

. Thus, we conclude from (8.67) that for sufficiently large L

P
(
ML (A[β]) ≥ M[β]π L2 + aL2, N [α; L] holds | U[S1(R); α]

)
> 1/4.

The required relation (8.65) follows now by Lemma 7.1 in view of (8.66).

8.2. Upper Bound for (1.17)

To complete the proof of (1.17) we shall establish the following upper bound,
complementary to (8.65),

P(ML (A[β]) ≥ M[β]π L2 + aL2, N [α; L] holds)

≤ exp

(
−
√

2πa

|M[β]| Lτ [β]
α + O(α)

)
. (8.68)

To this end use the exponential tightness bound in Lemma 2.1 to get for some

C1 = C1(a) and C2 >
√

2πa
|M[β]|τ

[β]

P(ML (A[β]) ≥ M[β]π L2 + aL2, N [α; L] holds)

≤ P(ML (A[β]) ≥ M[β]π L2 + aL2, length(Lα;L )

≤ C1L , N [α; L] holds) + O(exp(−C2L)).

Applying Lemma 6.1 together with Corollary 6.2 we see that this probability
is bounded above by∑

�

P(ML (A[β]) ≥ M[β]π L2 + aL2, length(Lα;L )

≤ C1L , Lα;L ∝ �) + O(exp(−C2L)), (8.69)

where the sum above is taken over all (α, δ)-skeletons � contained in B2(L −
[4α − δ − √

2]). Note that we could restrict our attention to � ⊆ B2(L − [4α −
δ − √

2]) because of working on the event N [α, L], see (S4). It should also be
noted that any contour collection well covered by such � is completely con-
tained in B2(L) for L and α[L] large enough. Under the imposed requirement
that length(Lα;L ) ≤ C1L , the total length of skeleton segments in any � with
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P(Lα;L ∝ �) > 0 is also of order O(L), whence the sum in (8.69) can be re-
stricted only to skeletons of such length order. Observe now that the number of
such skeletons is of order exp(O(α−1L log L)) which, by (8.64), is exp(O(

√
L)).

Indeed, constructing the skeleton segment after segment at each step we have at
most O(L2) possibilities of choosing new initial/end point. However, the total
number of such steps, coinciding with twice the number of segments, is at most
of order O(L/α), because, as stated above, we only consider skeletons � with
length(�) = O(L) and the length of a single segment is close to α, see (S1). We
put this statement as a remark for further reference

Remark 8.1. The number of (α, δ)-skeletons � in B2(L) with length(�) = O(L)
is of order exp(O(α−1L log L)).

Consequently, by (8.69), in order to establish (8.68) it is enough to show that

max
�

P(ML (A[β]) ≥ M[β]π L2 + aL2, length(Lα;L ) ≤ C1L , Lα;L ∝ �)

≤ exp

(
−
√

2πa

|M[β]| Lτ [β]
α + O(α)

)
, (8.70)

with the maximum taken over all (α, δ)-skeletons � satisfying the conditions
specified above (i.e. contained in B2(L − [4α − δ − √

2]) and with total length of
order O(L)).

To proceed with the verification of (8.70) choose a skeleton �0 which achieves
the above maximum. Putting ν := Area(�0) and λ := length(�0) we conclude by
the isoperimetric Lemma 6.3 that

λ ≥ 2
√

πν[1 − O(δ/α)] − O(α).

Using that ν = O(L2) and that δL/α = α we obtain

λ ≥ 2
√

πν − O(α). (8.71)

To proceed, recall that M[β] ∈ (−1, 0) and observe that on the event Lα;L ∝ �0

we get by (3.20) and (S4)

EML

(
A[β];α,B2(L)

R
2:γ

∪ γ
) ≤ M[β](π L2 − ν) − νM[β] + O(Lα).

Thus, noting that the field A[β] conditioned on Lα;L = γ coincides in law with

A[β];α,B2(L)

R
2:γ

∪ γ and recalling that N (�) = O(λ/α), we conclude from Lemma 6.4

and Theorem 3.1 applied conditionally on Lα;L that the probability maximised in
(8.70) is bounded above by

exp
(−τ [β]

α λ
)

exp

(
−c

[
�2

L2
∧ �

α

])
, (8.72)
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where � := [M[β](π L2 − ν) − νM[β] + O(Lα)] − [M[β]π L2 + aL2] = 2ν

|M[β]| − aL2 + O(Lα) is the difference between the expected and actual
(required) magnetisation on the event Lα;L ∝ �0, and with ν and λ related by
(8.71). Recalling that λ = O(L), α = √

L log L , δ = (log L)2 and applying the
lower bound (8.65) we see that the maximum in (8.72) has to be reached with
� = O(L3/2 log L) = O(Lα) and, consequently,

ν = aL2

2|M[β]| + O(Lα), (8.73)

whence, by (8.71),

λ = L

√
2πa

|M[β]| + O(α), (8.74)

with the equality rather than inequality in the last formula due to (8.65). By
Lemma 6.4 this yields the required relation (8.70) and hence completes the proof
of (8.68).

8.3. Existence of a Large Contour

In view of the lower bound (8.65), the argument leading to (8.72) with the
optimal skeleton �0 replaced by a generic skeleton � shows that, conditionally
on the event {ML (A[β]) > M[β]π L2 + aL2, N [α, L] holds}, with probability
tending to 1 we can have Lα,L ∝ � only for those (α, δ)-skeletons � which satisfy
(8.73) and (8.74) with ν = Area(�) and λ = length(�). By the definition of
the relation ∝ and by the proof of the isoperimetric Lemma 6.3 this means that
with conditional probability tending to 1 on the event {ML (A[β]) > M[β]π L2 +
aL2, N [α, L] holds} there exists at least one contour θlarge of length L

√
2πa

|M[β]| +
O(α) and enclosing area aL2

2|M[β]| + O(Lα). In fact, we claim that for K large

enough, conditionally on {ML (A[β]) > M[β]π L2 + aL2, N [α, L] holds}, with
probability arbitrarily close to 1 the contour θlarge is the only Kα-large contour of
A[β] in B2(L). Indeed, for each � as above, i.e. satisfying (8.73) and (8.74), we
have

P(Lα,L ∝ �, A[β] contains more than one Kα-large contour in B2(L),

N [α, L] holds ) ≤
∫

θlarge

P

(
lengthLα,L

(
A[β]

R
2:θlarge

)
≥ Kα

)
�[β](dθlarge),

where the integral ranges over θlarge in B2(L) of length L
√

2πa
|M[β]| + O(α) and

enclosing area aL2

2|M[β]| + O(Lα). Now, Remark 8.1 and Lemma 6.4 imply that
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the total mass �[β](·) of such θlarge’s is of order exp(−
√

2πa
|M[β]| Lτ [β]

α + O(α)).

Moreover, by Lemma 2.1 applied toA[β]
R

2:θlarge
the integrand probability is uniformly

of order O(exp(−Kα)). We now conclude our claim for K large enough in view
of the lower bound (8.65).

8.4. Uniqueness of the Large Contour, Excluding

Intermediate Contours

It follows by the previous Subsec. 8.3 that, conditionally on the event
{ML (A[β]) > M[β]π L2 + aL2, N [α, L] holds}, with overwhelming probability

there exists one large contour θlarge of length L
√

2πa
|M[β]| + O(α), enclosing phase

area aL2

2|M[β]| + O(Lα), and this is the only Kα-large contour of A[β] hitting B2(L),
with K large enough. Below, we argue that for sufficiently large Clarge, with over-
whelming conditional probability, θlarge is in fact the unique Clarge log L-large con-
tour of A[β] hitting B2(L). The first step in this direction is showing in Lemma 8.2,
similar to Lemma 4.2.4 in, Ref. 12, that the phase of Kα-large contours adjusts
very tightly to the micro-canonical constraint ML (A[β]) > [M[β]π + a]L2 and,
roughly speaking, ‘not much work is left for small contours.’ Next, in Lemma 8.3
we use this knowledge to deduce the uniqueness of the large contour θlarge and to
exclude the presence of any other Clarge log L-large contours with overwhelming
probability under the micro-canonical constraint.

To proceed with the first of the afore-mentioned steps, we claim first that

Lemma 8.2. With K as specified above we have

P
(

[M[β]π + a]L2 − E
(
ML (A[β])

∣∣LKα;L
)

> L4/3
∣∣

ML (A[β]) > [M[β]π + a]L2,N [α, L] holds
) = o(1).

Proof: We set

ρ = ρ[L] := L7/12.

Applying Lemma 6.1 and Corollary 6.2 we get

P
(
[M[β]π + a]L2 − E

(
ML (A[β])

∣∣LKα;L
)

> L4/3, ML (A[β])

> [M[β]π + a]L2
) ≤

∑
�

P
(
ML (A[β]) > [M[β]π + a]L2, [M[β]π + a]L2

−E
(
ML (A[β])

∣∣LKα;L
)

> L4/3, LKα;L
(Kα,δ)∝ �

)
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with the sum ranging over all (Kα, δ)-skeletons � contained in B2(L) and with
(Kα,δ)∝ used as an indexed version of ∝ to denote the well-covering relation of
(Kα, δ)-contours by (Kα, δ)-skeletons. Use the exponential tightness results of
Lemma 2.1 in Sec. 2 to conclude that, with arbitrarily large C1 and with C2 large
enough, this sum can be bounded above by∑

�, length(�)∈
[

L
√

2πa
|M[β]| −ρ,C2 L

]P
(
[M[β]π + a]L2 − E

(
ML (A[β])

∣∣LKα;L
)

> L4/3, LKα;L
(Kα,δ)∝ �

)
+

∑
�, length(�)<L

√
2πa

|M[β]| −ρ

P
(
ML (A[β]) > [M[β]π + a]L2, LKα;L

(Kα,δ)∝ �
)

+ exp(−C1L). (8.75)

We proceed by showing that all consecutive terms in (8.75), for brevity denoted
below by P1, P2 and P3 respectively, are negligibly small compared to the prob-
ability P4 := P(ML (A[β]) > [M[β]π + a]L2,N [α, L] holds). To begin with the
first term P1, use Remark 8.1 to conclude that the number of summands in this
sum is of order exp(O(α−1L log L)). Moreover, applying Lemma 6.4, noting that
conditionally on LKα;L = γ the field A[β] coincides in law with A[β];Kα,B2(L)

R
2:γ

∪ γ

and using Theorem 3.1 conditionally on LKα;L , we uniformly bound above each
summand of P1 by

exp

(
−
[√

2πa

|M[β]| L − ρ

]
τ

[β]
Kα

)
exp

(
−c

[
L8/3

L2
∧ L4/3

Kα

])

= exp

(
−
√

2πa

|M[β]| Lτ
[β]
Kα + O(ρ)

)
exp

(−cL2/3
)
.

Recalling the definition of α = α[L] = √
L log L , ρ = L7/12 and using the lower

bound (8.65) of Theorem 1.2 with α replaced there by Kα, we conclude that

P1 = o(P4). (8.76)

To show that

P2 = o(P4) (8.77)

observe that, by isoperimetric Lemma 6.3, length(�) < L
√

2πa
|M[β]| − ρ im-

plies that Area(�) < aL2

2|M[β]| − �(Lρ), whence, by (3.20), E(ML (A[β])|LKα;L ) ≤



678 Schreiber

[M[β]π + a]L2 − �(Lρ) almost surely on the event {LKα;L
(Kα,δ)∝ �}. Conse-

quently, by Theorem 3.1 applied conditionally on LKα;L , each summand in P2

is bounded above by exp(−c[ L2ρ2

L2 ∧ Lρ

α
]) = exp(−c Lρ

α
. Using the lower bound

(8.65) of Theorem 1.2 (with α replaced there by Kα) and recalling that ρL
α

� L
we obtain (8.77). Observing that, by the same lower bound (8.65), P3 = o(P4)
provided C1 is chosen large enough, we complete the proof of the Lemma by
combining (8.76) and (8.77). �

As announced above, our next statement will allow us to exclude with over-
whelming conditional probability under the micro-canonical constraint the pres-
ence of Clarge log L-large contours different than θlarge.

Lemma 8.3. There exists a constant Clarge > 0 such that uniformly in collections
γ of Kα-large contours in B2(L) with length(γ ) ≤ L log L and in � ≤ L4/3 we
have

P

(
A[β];Kα,B2(L)

R
2:γ

contains a Clarge log L−large contour
∣∣∣ML

(
A[β];Kα,B2(L)

R
2:γ

∪ γ
)

> EML

(
A[β];Kα,B2(L)

R
2:γ

∪ γ
)

+ �
)

= o(1).

Proof: For brevity write

µKα
L ,γ := ML

(
A[β];α,B2(L)

R
2:γ

∪ γ
)

, µ
Kα,h
L ,γ := ML

(
A[β,h];α,B2(L)

B2(L):γ ∪ γ
)

and let E[Clarge, L] be the event that A[β];α,B2(L)

R
2:γ

contains no Clarge log L-large

contours hitting B2(L) and Eh[Clarge, L] the event that A[β,h];Kα,B2(L)
B2(L):γ contains

no Clarge log L-large contours hitting B2(L). From Corollary 3.5 it follows in
particular that for each η ∈ [

�, L4/3 log L
]

there exists a unique value of the
external magnetic field h[η, L] := h[η, L , γ ] = �(η/L2) such that

Eµ
Kα,h[η,L]
L ,γ = EµKα

L ,γ + η (8.78)

and, moreover, h[η, L] increases with η given L , whence h[η, L] ∈
[h−[L], h+[L]] with

h−[L] := h[�, L] = �(�/L2)

and

h+[L] := h[L4/3 log L , L] = �(L−2/3 log L).

For each L > 0 we split the interval [�, L4/3 log L] into �(h+[L]L4/3 log L) =
�(L2/3 log2(L)) equal-sized subintervals [� = η0, η1), [η1, η2), . . . of length
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�(1/h+[L]) = �(L2/3/ log L) each and we put hk,L := h[ ηk+ηk+1

2 , L]. For each
of the subintervals [ηk, ηk+1) write

P(E[Clarge, L]|µKα
L ,γ ∈ EµKα

L ,γ + [ηk, ηk+1))

≤
exp(−hk,L [EµKα

L ,γ + ηk])P
(
Ehk,L [Clarge, L] holds, µ

Kα,hk,L
L ,γ ∈ EµKα

L ,γ + [ηk, ηk+1)
)

exp(−hk,L [EµKα
L ,γ + ηk+1])P

(
µ

Kα,hk,L
L ,γ ∈ EµKα

L ,γ + [ηk, ηk+1)
)

≤ exp(hk,L [ηk+1 − ηk])P

(
Ehk,L [Clarge, L]

∣∣∣|µKα,hk,L
L ,γ − Eµ

Kα,hk,L
L ,γ | ≤ ηk+1 − ηk

2

)
.

(8.79)

At this point we claim that

P

(∣∣∣µKα,hk,L

L ,γ − Eµ
Kα,hk,L

L ,γ

∣∣∣ ≤ ηk+1 − ηk

2

)
= �(L−1/3 log−1 L) (8.80)

uniformly in L , γ,�, k. Note that this is in fact a rather weak statement in the
spirit of local central limit theorem (LCLT) and an LCLT could in principle be
established for the polygonal Markov fields in its full strength much along the
same lines as Lemma 2.4.1 in, Ref. 12, with standard modifications due to the
non-lattice nature of our setting. However, since we only need the weaker relation
(8.80), we provide a much shorter argument specialised for this case. To this end,
we subdivide the disk B2(L) into �(L) equal-sized squares Q1,L , Q2,L , . . . of side
length �(

√
L), separated by moats of width log2(L). Now, in view of (1.10), the

family of identically distributed random variables

Xi,L := MQi,L

(
A[β,hk,L ];Kα,B2(L)

B2(L):γ ∪ γ
)

,

can be coupled with a sequence of i.i.d. copies X̂i,L of Xi,L in the way that P(∃i

Xi,L �= X̂i,L ) = O(L2 exp(−c log2(L))), c > 0. Indeed, O(L2 exp(−c log2(L)))
is the order of the probability that the ancestor clans arising for different Qi,L

in the graphical construction of Subsubsec. 1.2.2 are not all pairwise disjoint.
Write

YL := MB2(L)\⋃i Qi,L

(
A[β,hk,L ];Kα,B2(L)

B2(L):γ ∪ γ
)

and note that

µ
hk,L ,Kα

L ,γ =
∑

i

Xi,L + YL . (8.81)

Further, observe that, in complete analogy with Theorem 3.1,

P(|YL − EYL | >
√

L log3(L))
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≤ exp

(
−c

[
[
√

L log3(L)]2

L log2(L)
∧

√
L log3(L)

Kα

])
= e−c log2(L). (8.82)

Using the coupling of Xi,L and X̂i,L as discussed above, taking into account (8.81)
and (8.82) and recalling that ηk+1 − ηk = �(L2/3/ log L) � √

L log3(L) we can
now deduce the required relation (8.80) by the classical local central limit theorem
applied for

∑
i X̂ i,L , use e.g. Theorem 1 in Wey(17) with λL := L2/3/ log(L) and

ML := L2/3/ log2(L) there, with the assumption (H1) [central limit theorem for
µ

Kα,hk,L

L ,γ ] there following by Theorem 2.10.5 of Ref. 10 or Theorem 2.4.R5 and
Sec. 5.3 in Ref. 9 with obvious modifications due to the continuum rather than
lattice nature of our setting, and with the assumption (H2) in Ref. 17 satisfied in
view of (3.25), (3.27) and by the relation Var[µKα,hk,L

L ,γ ] = �(L2) which can be
established along the same lines as (3.29).

Consequently, since hk,L [ηk+1 − ηk] = O(1) in (8.79), combining the re-
lation (8.79) with (8.80) and taking into account that P(Ehk,L [Clarge, L]) =
exp(−�(Clarge log L)) uniformly in �, L , k, γ for Clarge large enough in view
of Lemma 2.1 in Sec. 2, we conclude that, uniformly in �, L , k, γ

P(E[Clarge, L]|µKα
L ,γ ∈ EµKα

L ,γ + [ηk, ηk+1)) = o(1). (8.83)

In view of (8.83) the assertion of our lemma will follow as soon as we show that

P
(
µKα

L ,γ > EµKα
L ,γ + L4/3 log L|µKα

L ,γ > EµKα
L ,γ + �

) = o(1) (8.84)

uniformly in �, L , γ . To this end, use Theorem 3.1 to conclude that

P
(
µKα

L ,γ > EµKα
L ,γ + L4/3 log L

) ≤ exp(−cL2/3 log2(L)). (8.85)

Next, apply Lemma 3.6 to get

P
(
µKα

L ,γ > EµKα
L ,γ + �

) ≥ exp(−O([� + L log L]2/L2)) ≥ exp(−O(L2/3)).

which yields the required relation (8.84) when combined with (8.85). The proof
of the lemma is hence complete. �

Recalling that conditionally on LKα;L = γ the field A[β] coincides in distri-
bution with A[β];Kα,B2(L)

R
2:γ

∪γ and that, by the discussion in Subsec. 8.3, LKα,L =
{θlarge} with overwhelming probability under the micro-canonical constraint, and
then combining Lemma 8.2 with Lemma 8.3 applied conditionally on γ = LKα,L ,

shows that, conditionally on the event {ML

(
A[β]

)
> M[β]π L2 + aL2, N [α, L]

holds}, with overwhelming probability θlarge is the only Cmax log L-large contour
of A[β] hitting B2(L). This completes the present subsection of the proof.
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8.5. Localising the Large Contour

It remains to show that the large contour θlarge satisfies

min
x

ρH

(
θlarge, S1

(
x, L

√
a

2π |M[β]|
))

= O
(

L3/4
√

log L
)

.

But this follows immediately by specialising to our setting for θlarge the inequality
(2.4.1) in Sec. 2.4 of Dobrushin, Kotecký and Shlosman(7) and combining it with
(8.73) and (8.74). This completes the proof of Theorem 1.2. �

A.1. APPENDIX

Below, we discuss the dynamic representation and some further properties
of the basic Arak process, see Arak and Surgailis, (2) Section 4 for the dynamic
representation. For a fixed bounded open convex domain D we shall construct
the basic Arak process A∗

D with free boundary conditions (unlike in (1.1) where
empty boundary conditions are imposed).

A.1.1. Dynamic Construction of the Basic Arak Process

We interpret the domain D as a set of time-space points (t, y) ∈ D, with t
referred to as the time coordinate and with y standing for the spatial coordinate of
a particle at the time t. In this language, a straight line segment in D stands for a
piece of the time-space trajectory of a freely moving particle. For a straight line l
non-parallel to the time axis and crossing the domain D we define in the obvious
way its entry point to D, in(l, D) ∈ ∂ D and its exit point out(l, D) ∈ ∂ D.

We choose the time-space birth coordinates for the new particles according
to a homogeneous Poisson point process of intensity π in D (interior birth sites)
superposed with a Poisson point process on the boundary (boundary birth sites)
with the intensity measure

κ(B) = Ecard{l ∈ �, in(l, D) ∈ B}, B ⊆ ∂ D. (A.1)

Each interior birth site emits two particles, moving with initial velocities v′ and
v′′ chosen according to the joint distribution

θ (dv′, dv′′) := π−1|v′ − v′′|(1 + v′2)−3/2(1 + v′′2)−3/2dv′dv′′. (A.2)

This can be shown to be equivalent to choosing the directions of the straight lines
representing the space-time trajectories of the emitted particles according to the
distribution of the typical angle between two lines of �, see Sec. 3 and 4 in Ref. 2
and the references therein. It is also easily seen that the value of angle φ ∈ (0, π )
between these lines is distributed according to the density sin(φ)/2. Each boundary
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birth site x ∈ ∂ D yields one particle with initial speed v determined according to
the distribution θx (dv) identified by requiring that the direction of the line entering
D at x and representing the time-space trajectory of the emitted particle be chosen
according to the distribution of a straight line l ∈ � conditioned on the event
{x = in(l, D)}.

All the particles evolve independently in time according to the following
rules.

(E1) Between the critical moments listed below each particle moves freely with
constant velocity so that dy = vdt,

(E2) When a particle touches the boundary ∂ D, it dies,
(E3) In case of a collision of two particles (equal spatial coordinates y at some

moment t with (t, y) ∈ D), both of them die,
(E4) The time evolution of the velocity vt of an individual particle is given by

a pure-jump Markov process so that

P(vt+dt ∈ du | vt = v) = q(v, du)dt

for the transition kernel

q(v, du) := |u − v|(1 + u2)−3/2dudt.

It is worth noting that, in full analogy with the discussion following (A.2), the
(sharp) angle between the straight lines representing the space-time trajectories
of the particle before and after the velocity update is distributed according to the
typical angle between two lines of �.

It has been proven (see Lemma 4.1 in Ref. 2) that with the above construction
of the interacting particle system, the time-space trajectories traced by the evolving
particles coincide in distribution with the Arak process A∗

D defined as in (1.1) with
the family �D of admissible polygonal configurations extended to �∗

D allowing
also for partial contours chopped off by the boundary, which amounts to admitting
not only internal vertices of degree 2, as in (P2), but also boundary vertices of
degree 1.

A.1.2. Properties of the Basic Arak Process

As already mentioned in the introductory section, and as shown in Arak and
Surgailis, (2) the basic Arak processA∗

D enjoys a number of striking properties. The
two-dimensional germ Markov property, stating that the conditional distribution of
the field inside a bounded region with piecewise smooth boundary given the outside
configuration only depends on the trace of this configuration on the boundary
(intersection points and intersection directions) is an immediate consequence of
the Gibbsian definition. Next important property is the consistency: for bounded
open and convex D1 and D2 with D1 ⊆ D2 the restriction of A∗

D2
to D1 coincides
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in distribution with A∗
D1

, see Theorem 4.1 ibidem. This immediately allows us to
define the infinite volume Arak process A, which inherits the isometry invariance
of the finite volume Gibbsian definition and which is a thermodynamic limit
for A[0]. By the results of Schreiber, (14) this corresponds to the unique infinite-
volume bounded-density stationary evolution of the particle system discussed in
Subsec. A.1.1 above. Interestingly, the intersection of the Arak process A with
any fixed straight line is a Poisson point process of intensity 2, see, Ref. 2, which
gives us direct access to two-point correlation functions of A under the colouring
as in Subsec. 1.1. Moreover, the partition function for the Arak process can be
explicitly evaluated: it is known that

E

∑
δ∈�∗

D (�D )

exp(−2length(δ)) = exp(πArea(D)),

see Theorem 4.1 in Ref. 2 [note that the prefactor 2 exp(length(∂ D)), present
in the quoted theorem, is absent here because we take the law of � rather than
the unnormalised measure µ∗ as the reference measure and, moreover, we do
not sum over two different admissible black/white colourings of each polygonal
configuration]. It should be emphasised that these exact results are only available
for A and not for A[β], β > 0.

Interestingly, there exists a much broader class of consistent polygonal
Markov fields admitting analogous dynamic representations, possibly enhanced
to allow for vertices of higher degrees (3 and 4), see ibidem. The question
of characterising the class of all polygonal Markov fields admitting dynamic
representations is far from being trivial and falls beyond the scope of this article.
A conjectured description of this class has been provided in Arak, Clifford and
Surgailis, (4) where a very nice alternative point- rather than line-based represen-
tation of polygonal fields is also discussed.
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